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ABSTRACT OF DISSERTATION 
 
 
 
 

ANALYTICAL STRIP METHOD TO  
ANTISYMMETRIC LAMINATED PLATES 

 
An Analytical Strip Method (ASM) for the analysis of stiffened and non-stiffened 

antisymmetric laminated composite plates is derived by considering the 
bending-extension coupling effect for bending, free vibration and buckling.  A system 
of three equations of equilibrium, governing the general response of arbitrarily laminated 
composite plates, is reduced to a single eighth order partial differential equation in terms 
of a displacement function.  The displacement function is solved in a single series form 
to determine the displacement, fundamental frequency, and buckling load of 
antisymmetric cross-ply and angle-ply laminated composite plates.  The solution is 
applicable to rectangular plates with two opposite edges simply supported, while the 
other edges are simply supported, clamped, free, beam supported, or any combinations of 
these boundary conditions. 

This method overcomes the limitations of other analytical methods (Navier’s and 
Lévy’s), and provides an alternative to numerical, semi-numerical, and approximate 
methods of analysis.  Numerical examples of bending, free vibration, and buckling of 
antisymmetric laminated composite plates are presented in tabular and graphical form.  
Whenever possible, the results of the present study are compared with those published in 
the literature and/or ANSYS solutions.  The comparison firmly establishes that this 
method could be used for the analysis of antisymmetric laminated composite plates.  
Future research needs are identified for the aspects that have not been reached by the 
present study and others. 

 
KEYWORDS: Analytical solution; stiffened laminated plates; bending-extension 

coupling; fundamental frequency; buckling 
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NOMENCLATURE 

 a, b  = plate dimensions in x direction and y direction, respectively 
 ai  = coefficients for displacements, force, and moment results for 

antisymmetric cross-ply laminated plates 
 Ai  = coefficients for governing differential equation of laminated plate  

 *
iA  = modified coefficients for governing differential equation of 

laminated plate under free vibration or buckling study 
 Aij  = extensional stiffness coefficients 
 bi  = coefficients for displacements, force, and moment results for 

antisymmetric angle-ply laminated plates 
 Bij  = bending-extension coupling stiffness coefficients 
 Cdm  = constants of the general expression of the homogeneous solution for 

ordinary differential equation associated with the mth eigenmode (d 
= 1, 2, …, 8) 

 d  = dth index if used as subscript  
 DE  = equivalent flexural rigidity of orthotropic plate 
 Dij  = bending stiffness coefficients 
 E1, E2  = elastic moduli in fiber direction and the direction perpendicular to 
   the fibers  
  EbCw  = warping rigidity of the beam 
  EbIb  = flexural rigidity of the beam 
  f(x)  = load distribution function in the x direction 
  g(y)  = load distribution function in the y direction 

  mg1   = ∫
b

m dyyyg
b 0

)sin()(2 β , the constant for the mth mode of deflection 

 G12, G23, G31  = elastic moduli with respect to fiber principle directions: G23 is the 
   shear modulus with respect to the shear strain γ23 in the 2-3 plane of 
  the fiber coordinate, and so forth  
 GbJb  = torsional rigidity of the beam 
 H  = total laminate thickness 
 I  = strip number if used as subscript  
 I0  = mass inertia  
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 I2  = rotary inertia  
 J  = Jth beam if used as subscript  
 k  = layer number if used as subscript or superscript  

 kN  = in-plane force ratio between Nx and Ny, 
x

y
N N

N
k =   

 K1, K2, and K3 = dimensionless flexural rigidity, torsional rigidity, and warping 
rigidity of the beam, respectively  

 L  = total layers of laminated plate 

 ijL  = differential operators 

 m, n  = mth or nth series if used as subscript  

 xyyx MMM ,,  = membrane moments 

 xyyx NNN ,,  = membrane forces 

 xN  = dimensionless buckling load in x-direction 

 yN  = dimensionless buckling load in y-direction 

 q(x,y)  = transverse load on plate  
 Qbl  = lateral load per unit length applied to the beam element at the line  
  x = xl 
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 Tbl  = twisting moment per unit length applied to the beam element at the 
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 u, v, w  = translational displacements in global axis x, y and z directions    
 u0, v0  = mid-plane values of in-plane displacements in global axis x and y 
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 V  = lateral load per unit length on boundary    
 w  = lateral displacement in global axis z direction    
 ŵ  = dimensionless deflection    

 Wb  = deflection of the beam    
 x, y, z  = global Cartesian coordinates  
 zk   = distance between midplane of plate and the kth orthotropic lamina 

surface  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Composite materials consist of two or more materials which together produce 

desirable properties that cannot be achieved with any of the constituents alone.  They 

have a long history of usage.  Their beginnings are unknown, but all recorded history 

contains references to some form of composite material.  For example, plywood was 

used by ancient Egyptians to achieve superior strength and high resistance to thermal 

expansion and swelling, due to the presence of moisture; and Medieval swords and armor 

were constructed with layers of different materials (Jones, 1975).  Currently, composite 

materials are extensively used in engineering applications, due to their high strength to 

weight ratio, stiffness to weight ratio, high thermal stability, excellent resistance to 

environmental and corrosion attack, magnetic transparency, and high fatigue strength. 

More specifically, composite laminated plates are formed by stacking layers of 

different composite materials and/or ply orientation.  Lamination is used to combine the 

best aspects of the constituent layers, in order to achieve a more useful material.  The 

properties that can be emphasized by lamination are strength, stiffness, low weight, 

corrosion resistance, wear resistance, beauty or attractiveness, thermal insulation, 

acoustical insulation, etc.   

By construction, laminated plates have planar dimensions one to two orders of 

magnitude larger than their thickness.  Regularly laminated plates are used in 

applications that require membrane and bending strengths.  When ply stacking sequence, 

material, and geometry (i.e., ply thicknesses) are symmetric to the midplane of the 

laminated plate, it is called a symmetric laminated plate.  An antisymmetric laminated 

plate is one whose lamination scheme is antisymmetric, and material and thicknesses are 

symmetric to the midplane.  Unlike symmetric laminated plate, bending is coupled with 

extension (in-plane) or twisting in antisymmetric laminated plate.  This coupling makes 

analytical solutions difficult, and creates pronounced differences in plate response.  Due 

to the complexity of the analysis of antisymmetric laminated plate, better understanding 

of this plate’s behavior and performance, as well as more efficient analysis approaches, 

are desirable. 
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1.2 Literature Review 

A variety of laminated plate theories have been developed and reported in much 

of the literature concerning the analysis of multi-layered composite plates. 

An extensive review of various equivalent single layer and layerwise laminated 

plate theories was presented by Reddy and Robbins (1994).  An overall comparison of 

laminated theories, based on displacement hypothesis, was presented by Liu and Li 

(1996), which compared theories including shear deformation, layerwise, generalized 

Zigzag, and the proposed global-local double-superposition.  A detail review of theories 

for laminated and sandwich plates was given by Altenbach (1998).  A review of 

displacement and stress based refined theories, for isotropic and anisotropic laminated 

plates, was presented by Ghugal and Shimpi (2002).  In this specific review, Ghugal and 

Shimpi discussed various equivalent single layer and layerwise theories for laminated 

plates, together with their merits and demerits.  A historical review of the Zig-Zag 

theories for multilayered plates and shells, up to 2003, was given by Carrera (2003).  A 

piecewise, continuous displacement field in the plate thickness direction is described and 

interlaminar continuity of transverse stresses at each layer interface is fulfilled in Zig-Zag 

theories.  A review of shear deformation plate and shell theories was presented by 

Reddy and Arciniega (2004).  The discussion of plate and shell theories from Stavsky 

up to 2004 was a review of various theories for modeling laminated shells, including 

shear effects and some analytical studies.  A review on the different methods used for 

the estimation of transverse/interlaminar stresses in laminated composite plates and shells 

was reported by Kant and Swaminathan (2000).  A selective literature survey on the 

free-edge effect since 1967 up to 2004 was given by Mittelstedk and Becker (2004). 

Generally, the laminated plate theories can be broadly divided into two categories: 

equivalent single layer theories (ESL) and layerwise or layer-by-layer theories. The ESL 

theories are derived from the 3-D elasticity theory, making suitable assumptions 

concerning the kinematics of deformation or the stress state through the thickness of the 

laminate.  These assumptions reduce a 3-D problem to a 2-D problem.  Layerwise 

theories provide an intermediate discretization level between a complete 3D 

representation and an equivalent single layer 2D model.  They predict highly accurate 
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responses at the ply level, where material discontinuities take place but the complexity 

involved makes research a major concern.  Among the ESL theories, the classical 

laminated plate theory (CLPT) (Whitney and Leissa, 1969) is established through small 

deformation assumptions, as well as the well-known Kirchhoff-Love hypothesis, which 

indicates that a straight line, normal to the middle surface before deformation, remains 

straight and normal to the deformed middle surface.  Transverse deformations, including 

transverse normal and transverse shear deformations, are neglected.  The CLPT is 

broadly applied to obtain analytical, numerical, and semi- numerical solutions. 

 

1.2.1 Analytical solution 

An analytical, or exact, solution (Timoshenko, 1961) of a problem is one that 

satisfies the governing equations at every point of the domain, the boundary, and initial 

conditions of the problem.  It is general and valid for all parameter values. We get the 

specific solution by simple substitution, without the need for solving the problem from 

the beginning.  An analytical solution can be either closed-form or an infinite series.  

The solutions found with any method, such as Navier, Lévy, and Ritz methods (Ugural , 

1999; Reddy, 2004), are termed analytical solutions. 

The Navier solutions can be developed for a rectangular laminate when all four 

edges of the laminate are simply supported.  The limitation of these solutions is that 

only laminated plates with four edges simply supported can be solved.  The Lévy 

solutions can be developed for plates with two opposite edges simply supported and 

remaining two edges having any possible combination of boundary conditions: free, 

simple support, or clamped support.  Compared with Navier solutions, Lévy solutions 

can solve problems with more complicated boundary conditions, but Lévy solutions are 

limited to plates that have supports on edges.  The Ritz method can be used to determine 

approximate solutions for more general boundary conditions, as long as suitable 

approximation functions can be found for the problem.  The limitation of the Ritz 

method is that the solution converges slowly, unless the complexity of approximation 

functions is increased. 

The basic procedure of deriving analytical solutions can be described by the 

following steps:  (1) find a function with unknown coefficients that satisfies the primary 
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boundary conditions;  (2) substitute its derivatives into the governing differential 

equation or energy expression;  (3) derive a group of algebraic equations according to 

the equilibrium or energy principle; and (4) determine the unknown coefficients in the 

function by solving the derived algebraic equations (Timoshenko, 1961).   

If applicable, an analytical solution is often used as a benchmark to check 

solutions attained by other methods.  Analytical methods have been used to demonstrate 

various plate theories, especially for illustrative purposes.    

 

1.2.2 Numerical solution 

A numerical solution (Szilard, 1974) is one that is obtained by satisfying the 

governing equations and boundary conditions of the problem in an approximate sense.  

Since most real world problems are defined on domains, which are geometrically 

complex and may have different types of boundary conditions on different portions of the 

boundary of the domain, it is difficult to generate the functions required in traditional 

analytical methods.  The use of numerical approaches enables the engineer to expand 

his or her ability to solve such problems of practical significance.   

The solutions obtained with any of the numerical methods, such as finite 

difference method and finite element method, are termed numerical solutions.  Both 

finite difference and finite element techniques eventually require the solution of a system 

of linear algebraic equations.  Such calculations are commonly performed by means of a 

digital computer, employing matrix methods.  The finite difference method is simple, 

versatile, and suitable for computer and programmable desk calculator use.  The results 

from finite difference method have acceptable accuracy for most technical purposes, 

provided that a relatively fine mesh is used.  While the finite element methods have 

proved to be extremely powerful and versatile tools for static and dynamic analysis of a 

wide variety of beam, plate, and shell problems; they, however, require the use of a 

computer with considerable speed and storage capacity.  Numerical methods cannot 

give a continuous solution. 
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1.2.3 Semi-numerical solution 

A semi-numerical, or semi-analytical, solution of a problem is one that satisfies 

the governing equations analytically, in one or two directions, and numerically, in 

remaining directions.  A typical semi-numerical solution is achieved by the finite strip 

method (Cheung et al., 1982).  In comparison with the numerical method, the main 

advantage is that the effort and expense for data preparation and input are minimized 

because the finite strip method reduces the high dimensional model to a low dimensional 

model.  However, the limitations that exist in both analytical and numerical solutions 

are not fully overcome. 

 

1.3 Scope of Work 

The objective of this research is to extend Analytical Strip Method (ASM) to 

antisymmetric stiffened cross-ply and angle-ply laminated plates with various boundary 

and/or internal supports and loading conditions.   

 The ASM, as an analytical solution, was introduced by Harik and Salamoun 

(1986) for the analysis of thin orthotropic and stiffened rectangular plates subjected to 

uniform, partial uniform, patch, line, partial line, point loads, and to any combination of 

these loads (Figure 1.1). The method requires that the plate be divided into strips whose 

number depends on the geometrical discontinuities and the type and location of the loads. 

The solution to the governing differential equation of each strip employs the classical 

method of separation of variables. Unlike the numerical and semi-numerical methods, the 

accuracy of the analytic strip method does not depend on the number of strips, but on the 

number of modes considered in the series. The number of algebraic equations and the 

computational difficulties are reduced considerably. 

In order to achieve the objective of this research, the following tasks will be 

conducted: 

1. Derive analytical bending-extension coupling solutions for stiffened and 

non-stiffened antisymmetric cross-ply laminated and angle-ply laminated plates, 

simply supported along two parallel edges, and any combination of boundary 

conditions along the other edges under varied loading conditions.   
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2. Apply the method to continuous antisymmetric cross-ply and angle-ply laminated 

plates with internal support.   

3. Determine fundamental frequencies for the laminated plates mentioned in Task 1. 

  

4. Determine critical buckling loads for the laminated plates mentioned in Task 1.   
 
The significance of this study lies in the derivation of an analytical solution to 

antisymmetric cross-ply and angle-ply laminated plates comprising bending-extension 

coupling with various support and loading conditions.  This proposed work overcomes 

some limitations of the Navier, Lévy, and Ritz analytical solutions mentioned in Section 

1.2. 

 

1.4 Dissertation Outline 

The dissertation consists of seven chapters organized in the following manner: 

• Chapter 2 presents the procedure for the solution of the governing differential 

equation for bending-extension coupling of antisymmetric cross-ply and angle-ply 

laminated plates, with two opposite edges simply supported, and any boundary 

conditions along other two edges.  Assumptions, relations, and mathematical 

operations that are necessary to the formulas are presented.  The detailed 

expressions of coefficients Ai, for governing differential equation of 

antisymmetric laminated plates; coefficients ai and bi, for displacements, force, 

and moment results of antisymmetric cross-ply and angle-ply laminated plates are 

provided respectively in this chapter.   

• Chapter 3 presents the solution of the deflection and stresses for antisymmetric 

cross-ply and angle-ply laminated plates with different types of supports on edges 

only.  The procedure of an analytical solution for quartic equation is detailed in 

this chapter.  The numerical examples are presented for special features from an 

ASM approach. 

• Chapter 4 presents the solution of the deflection and stresses for continuous 

antisymmetric cross-ply and angle-ply laminated plates with beam on boundary, 

beam, and point supports inside plates. 
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• Chapters 5 and 6 present the solutions for the governing differential equation for 

free vibration and buckling of antisymmetric stiffened cross-ply and angle-ply 

laminated plates, with two opposite edges simply supported, and any boundary 

conditions along other two edges, respectively.  Comparisons with ANSYS 

results are presented for typical situations.  The numerical examples are indicated 

to demonstrate the advantages from an ASM approach. 

• In Chapter 7, there is a summary of the significant findings from this research.  

Conclusions are drawn with regards to its relevance.  Future research needs are 

identified and discussed according to the present research and the related areas. 
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Figure 1.1. Plate strips with strip and edge loadings 
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CHAPTER 2 

BASIC EQUATIONS FOR ANTISYMMETRIC 

LAMINATED PLATES 

2.1 Introduction 

This chapter presents the formulation for the bending-extension coupling on 

deflection, free vibration, and buckling of laminated plates.  In this dissertation, the term 

“layer”, or “lamina” refers to a single layer.  A laminated plate, or laminate, is 

composed of several layers (laminae). 

There are two classes of antisymmetric laminated plates: antisymmetric cross-ply 

and antisymmetric angle-ply laminated plates.  An antisymmetric cross-ply laminated 

plate consists of an even number of orthotropic laminae laid on each other with principal 

material directions, alternating at 0° and 90° to the laminate axes as in the simple 

example of Figure 2.1.  An antisymmetric angle-ply laminated plate has laminae 

oriented at +α degrees to the laminate coordinate axes on one side of the middle surface, 

and corresponding equal thickness laminae oriented at –α degrees on the other side 

(Figure 2.2).  

The derivation of ASM solution is based on the following assumptions: 

1. The materials from which the laminated plate is made are linear and 

elastic; The laminae are composed of homogeneous orthotropic materials. 

2. The laminated plate is built by a number of laminae perfectly bonded 

together;  No delamination appears at the lamina interfaces.  

3. The deformations in a layer follow the Kirchhoff hypothesis;  That is, a 

straight line perpendicular to the middle plane before deformation remains 

straight and normal to the mid-surface after deformation. 

4. The effect of transverse normal stress is neglected.  

5. The transverse normal strain is assumed negligible as well.  As a result, 

the transverse deflections along a normal line are identical.  

6. Displacements are assumed to be small compared with the laminated plate 

thickness. 
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2.2 Governing Differential Equations for Antisymmetric Laminated Plates 

The system of three equations of equilibrium governing the general response of 

arbitrarily laminated composite plates can be written as (Whitney and Leissa, 1969): 
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in which, the displacements in the x, y, and z directions, u0, v0, and w, respectively, are 

presented in terms of the displacement function ),( yxΦ  (Sharma et al., 1980): 
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in which Aij are the extensional stiffness coefficients, Bij are the bending-extensional 

coupling stiffness coefficients, and Dij are the bending stiffness coefficients. The stiffness 

coefficients are given by Reddy (2004) and are defined as follows:  
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where, h is the thickness of the plate, and ijQ are reduced stiffness coefficients, given by 

Reddy (2004): 
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in which θ is the angle measured counterclockwise from the x-coordinate to the fiber 

direction of the lamina, and the coefficients Qij are known in terms of the engineering 

constants: 
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where [A], [B], and [D] are the matrices containing Aij, Bij, and Dij (i, j = 1, 2, 6), 

respectively.  It should be noted that the transverse strains { }zzyzxz εεε ,, are identically 

zero in the classical plate theory.   

Based on von Kármán’s plate theory, the strains in the kth layer can be presented 

in the following form (Reddy, 2004): 
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γ
ε
ε

        (2.10) 

in which zk is the distance between the midplane of the plate and a point in the kth 

orthotropic lamina. 

The linear constitutive relations for the kth orthotropic lamina in the principal 

material coordinates of the lamina are: 
kkk

QQQ
QQQ
QQQ

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

yy

xx

662616

262212

161211

xy

yy

xx

γ
ε
ε

τ
σ
σ

       (2.11) 

Based on the derivation by Sharma et al. (1980), Equation 2.1 can be written as 

231231112332331221332211( LLLLLLLLLLLL +−−     

),(),()221331211332 yxqyxLLLLLL =Φ−+    (2.12) 

The governing differential equation for antisymmetric laminated plates can be 

derived from Equation 2.12 by expanding the differential operators ijL : 

),(ΦΦΦΦΦ
8

8

962

8

744

8

526

8

38

8

1 yxq
y

A
yx

A
yx

A
yx

A
x

A =
∂
∂

+
∂∂

∂
+

∂∂
∂

+
∂∂

∂
+

∂
∂    (2.13) 

in which Ai (i = 1,3,…,9) are (Sharma et al., 1980): 

)()2( 2
16661111

2
161111661616111 AAADBABABABA ++−−=           (2.14a) 

66161216161626661212122616113 42(2)523(2 BABABBABABABABA ++−++=    

    

))((2

)44()(8

)22()323

2
1666116612

2
666612

2
1211

2
11221216261116

6612
2

122211661611261116661612

AAAAA

BBBBABAAAAAD

AAAAAAADBABABA

−++

++−−−+

−−++−−+

       (2.14b)  
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121116162266221222262622662212115 (2)2(2 BABABBABABABABABA −+−−++=            

    

)22)(2(2

)22)(2(2

)(8)(8
)()()25(4

)(9)2(4)2(4)2

6612
2

12261622116612

666612666612
2
66

2
126612

6616121626116611261226162216

2
16661122

2
2666221166122616

2
2611

2
162266121626661226166611

AAAAAAADD

BABAAAAABB

AAAAAAAADAAAAD
AAADAAADAABB

BABABBABBBABBA

−−+++

−−++++

−−++−+
−+−+++

+−+−+−−

  (2.14c) 

22261622112616661212121626227 6)10426( ABBBABABABABABA −−−++=                   

    
)24)(2(

))(2(2)(8

)22()23(2

6622122226266612

2
26662266121226162226

26166612
2

122211226612
2
26

BABABABB
AAADDAAAAD

AAAAAAADAAB

−−++
−++−+

+−−+−+

         (2.14d) 

)()2( 2
26662222

2
262226662626229 AAADBABABABA −+−−=           (2.14e) 

 

Equation 2.13 is the governing differential equation for antisymmetric laminated plates. 

 

2.2.1 Antisymmetric cross-ply laminated plate 

Reddy (2004) has shown that for an antisymmetric cross-ply laminate, the 

stiffness: 

06626161226162616 ======== BBBBDDAA , and 1122 BB −=  

The coefficients of the governing Equation 2.13 are reduced to 

)( 2
111111661 BDAAA −=              (2.15a) 

)()2(2 2
1

2
66221111

2
1122661266113 EAAADBADDAAA −++−+=         (2.15b) 

)(
)(2)2)(2(2

1122221166

2
1166126612

2
12221166125

DADAA
BAAAAAAADDA

++
+−−−+=

          (2.15c) 

)2()2(2 6612
2
12221122

2
1111661266227 AAAAADBADDAAA −−+−+=         (2.15d) 

)( 2
112222669 BDAAA −=              (2.15e) 

The displacement components in terms of Φ  for antisymmetric cross-ply laminate are: 

4

5

323

5

25

5

10 yx
a

yx
a

x
au

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=              (2.16) 
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5

5

632

5

54

5

40 y
a

yx
a

yx
av

∂
Φ∂

+
∂∂
Φ∂

+
∂∂
Φ∂

=              (2.17) 

4

4

922

4

84

4

7 y
a

yx
a

x
aw

∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=              (2.18) 

where 

66111 ABa =                (2.19a) 

22112 ABa =                (2.19b) 

)( 6612113 AABa +=               (2.19c) 

)( 6612114 AABa +−=               (2.19d) 

11115 ABa −=                (2.19e) 

66116 ABa −=                (2.19f) 

66117 AAa =                (2.19g) 

6612
2

1222118 2 AAAAAa −−=              (2.19h) 

66229 AAa =                (2.19i) 

The force and moment resultants, in terms of Φ , can be obtained from the constitutive 

relation: 

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

κ
ε0

DB
BA

M
N

              (2.20) 

And from Equations 2.16 – 2.18.  These are: 

6

6

1242

6

1124

6

10 y
a

yx
a

yx
aNx ∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

=             (2.21) 

42

6

1524

6

146

6

13 yx
a

yx
a

x
aN y ∂∂

Φ∂
+

∂∂
Φ∂

+
∂
Φ∂

=             (2.22) 

5

6

1833

6

175

6

16 yx
a

yx
a

yx
aNxy ∂∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

=             (2.23) 

6

6

2242

6

2124

6

206

6

19 y
a

yx
a

yx
a

x
aM x ∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=            (2.24) 
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6

6

2642

6

2524

6

246

6

23 y
a

yx
a

yx
a

x
aM y ∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=            (2.25) 

5

6

2933

6

285

6

27 yx
a

yx
a

yx
aM xy ∂∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

=             (2.26) 

6

7

3243

7

3125

7

307

7

19 yx
a

yx
a

yx
a

x
aVx ∂∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=            (2.27) 

where: 

11661210 BAAa =               (2.28a) 

)( 2211116611 AABAa −=              (2.28b) 

11661212 BAAa −=               (2.28c) 

11661213 BAAa =               (2.28d) 

)( 2211661114 AAABa −=              (2.28e) 

11661215 BAAa −=               (2.28f) 

11661216 BAAa −=               (2.28g) 

)( 1122661117 AAABa −=              (2.28h) 

11661218 BAAa =               (2.28i) 

)( 1111
2

116619 DABAa −=              (2.28j) 

1266116612
2

1222111122
2

1120 )2( DAAAAAAADABa −−−−=           (2.28k) 

)2()( 6612
2

122211121166226612
2

1121 AAAAADDAAAABa −−−−+=          (2.28l) 

12662222 DAAa −=              (2.28m) 

12661123 DAAa −=               (2.28n) 

2266116612
2

122211126612
2

1124 )2()( DAAAAAAADAABa −−−−+=          (2.28o) 

)2( 6612
2

1222112212662211
2
1125 AAAAADDAAABa −−−−=          (2.28p) 

)( 2222
2

116626 DABAa −=              (2.28q) 

66661127 2 DAAa −=               (2.28r) 

)2(2 6612
2

1222116628 AAAAADa −−−=             (2.28s) 

66662229 2 DAAa −=               (2.28t) 
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272030 2+ aaa =               (2.28u) 

282131 2aaa +=               (2.28v) 

292232 2aaa +=               (2.28w) 

 

2.2.2 Antisymmetric angle-ply laminated plate 

Similarly, Reddy (2004) has shown that for an antisymmetric angle-ply laminate, 

the stiffness: 

06622121126162616 ======== BBBBDDAA  

The coefficients of the governing Equation 2.13 for this type of plate are reduced to: 

)( 2
161166111 BDAAA −=              (2.29a) 

)2(

)32(2)23(2

6612
2

12221111

261666661266116612
2

163

AAAAAD

BBDADAAAABA

−−+

−++−=
          (2.29b) 

 

)()(9

)2)(2(2)25(4

1122221166
2
2611

2
1622

6612
2

1222116612661226165

DADAABABA

AAAAADDAABBA

+++−

−−+++=
       (2.29c) 

 

)2(

)32(2)23(2

6612
2

12221122

261666661266226612
2
267

AAAAAD

BBDADAAAABA

−−+

−++−=
          (2.29d) 

 
)( 2

262266229 BDAAA −=              (2.29e) 

The displacement components, force and moment resultants, in terms of Φ for an 

antisymmetric angle-ply plate are: 

5

5

332

5

24

5

10 y
b

yx
b

yx
bu

∂
Φ∂

+
∂∂
Φ∂

+
∂∂
Φ∂

=              (2.30) 

4

5

623

5

55

5

40 yx
b

yx
b

x
bv

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=              (2.31) 

4

4

922

4

84

4

7 y
b

yx
b

x
bw

∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=              (2.32) 

5

6

1133

6

10 yx
b

yx
bNx ∂∂

Φ∂
+

∂∂
Φ∂

=               (2.33) 
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33

6

135

6

12 yx
b

yx
bN y ∂∂

Φ∂
+

∂∂
Φ∂

=               (2.34) 

42

6

1524

6

14 yx
b

yx
bNxy ∂∂

Φ∂
+

∂∂
Φ∂

=              (2.35) 

6

6

1942

6

1824

6

176

6

16 y
b

yx
b

yx
b

x
bM x ∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=            (2.36) 

6

6

2342

6

2224

6

216

6

20 y
b

yx
b

yx
b

x
bM y ∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=            (2.37) 

5

6

2633

6

255

6

24 yx
b

yx
b

yx
bM xy ∂∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

=             (2.38) 

6

7

2943

7

2825

7

277

7

16 yx
b

yx
b

yx
b

x
bVx ∂∂

Φ∂
+

∂∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

=            (2.39) 

where: 

)2( 6612161 AABb +−=               (2.40a) 

16226612262 B3A+)2A(3A-B +=b             (2.40b) 

26223 BA=b                (2.40c) 

16114 BA=b                (2.40d) 

26116612165 B3A+)2A(3A-B +=b             (2.40e) 

)2A(-AB 6612266 +=b              (2.40f) 

66117 AAb =                (2.40g) 

)2A(AA-AA 66121222118 +=b             (2.40h) 

66229 AAb =                (2.40i) 

)2A(-ABA+)B2A-B(AA 66121612266616221110 +=b           (2.40j) 

)2A(-ABA+)B2A-B(AA 66122612166626112211 +=b           (2.40k) 

2666116612
2
1222111612 BA2A-)A2A+A-A(AB=b           (2.40l) 

1666226612
2
1222112613 BA2A-)A2A+A-A(AB=b          (2.40m) 

)AA-(AB+)BA-B(A2A 2211
2
1216161226116614 =b           (2.40n) 

)AA-(AB+)BA-B(A2A 2211
2
1226261216226615 =b           (2.40o) 

)DA-(BA 1166
2
161116 =b              (2.40p) 
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1266116612
2
12221111161226111617 DAA-)A2A+A+A(-AD)B4A-B(3AB +=b        (2.40q) 

1166226612
2
12221112261216221618 DAA-)A2A+A+A(-AD)B4A-B(3AB +=b        (2.40r) 

)DA-B(BA 126626162219 =b              (2.40s) 

)DA-B(BA 126626161120 =b              (2.40t) 

2266116612
2
12221112161226112621 DAA-)A2A+A+A(-AD)B4A-B(3AB +=b        (2.40u) 

1266226612
2
12221122261216222622 DAA-)A2A+A+A(-AD)B4A-B(3AB +=b        (2.40v) 

)DA-(BA 2266
2
262223 =b              (2.40w) 

)2A+(-AB)D2A-B(BA 6612
2
16666626161124 +=b           (2.40x) 

)A2A+A+A(-AD2

)BAB3(A+)2A(3AB-2B

6612
2
12221166

2
1622

2
26116612261625

+

++=b
          (2.40y) 

)2A+(-AB)D2A-B(BA 6612
2
26666626162226 +=b           (2.40z) 

241727 2+ bbb =              (2.40aa) 

251828 2bbb +=              (2.40ab) 

261929 2bbb +=              (2.40ac) 
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Figure 2.1. An antisymmetric cross-ply laminate. 
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Figure 2.2. An antisymmetric angle-ply laminate. 
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CHAPTER 3 

BENDING-EXTENSION COUPLING OF ANTISYMMETRIC 

LAMINATED PLATES    
 
3.1 Introduction 

 The laminated plate components have wide applications in a variety of structures, 

such as ships, bridges, aircrafts, pressure vessels, buildings, etc., because of their superior 

performance.  The analysis, however, of laminated plates is more complicated than that 

of orthotropic ones, due to the bending-extension coupling.  During the last two decades, 

the state-space concept has been used to generate exact solutions for various boundary 

conditions, in order to address the bending-extension coupling problem of laminated 

plates (Khdeir, 1989 and 1996; Khdeir and Reddy, 1991).  In this chapter, analytical 

solutions for bending-extension coupling of antisymmetric laminated plates are obtained 

by using the Analytical Strip Method (ASM). 

 

3.2 Governing Differential Equation  

For an antisymmetric laminated plate, subjected to a transverse load q(x, y), the 

governing differential equation is shown in Equation 2.13: 

),(ΦΦΦΦΦ
8

8

962

8

744

8

526

8

38

8

1 yxq
y

A
yx

A
yx

A
yx

A
x

A =
∂
∂

+
∂∂

∂
+

∂∂
∂

+
∂∂

∂
+

∂
∂    (2.13) 

The Analytical Strip Method (ASM), which was introduced by Harik and Salamoun 

(1986), will be extended to solve this equation in conjunction with appropriate boundary 

and continuity conditions.  

 

3.3 Analytical Strip Method  

For a rectangular plate strip I, simply supported along two edges parallel to the 

x-axis (Figure 1.1), the solution to Equation 2.13 can be presented in a single series form: 

)sin()(),(Φ ∑
∞

⋅=
n

nnII yxyx βφ          (3.1) 

in which,  

βn = 
b

nπ            (3.2) 



www.manaraa.com

 

 
 22 

and b is the length of the plate along the y-axis.  Hereinafter, the subscript I, denoting 

the Ith plate strip, will be excluded in the derivation of the solution to Equation 2.13, for 

strip I. 

Substitution of Equation 3.1 into Equation 2.13, leads to: 

),()sin()()sin(
)(

)sin(
)(

)sin(
)(

)sin(
)(

8
9

6
2

2

7

4
4

4

5
2

6

6

38

8

1

yxqyxAy
dx

xd
A

y
dx

xd
Ay

dx
xd

Ay
dx

xd
A

n
nnn

n
nn

n

n
nn

n

n
nn

n

n
n

n

=+−

+−

∑∑

∑∑∑
∞∞

∞∞∞

ββφββ
φ

ββ
φ

ββ
φ

β
φ

   (3.3) 

Multiplying Equation 3.3 by ),sin( ymβ  integrating from y = 0 to y = b, and summing 

from m = 1 to m = ,∞  Equation 3.3 leads to: 

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡

⎪⎩

⎪
⎨

⎧

∫ ∑

∫ ∑

∫ ∑

∑ ∫ ∑

∞

∞

∞

∞ ∞

dyyy
dx
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A

dyyy
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A

dyyy
dx
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A
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A
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n
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n
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6
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4
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6
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3

0 8

8
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)sin()sin(
)(

)sin()sin(
)(

)sin()sin(
)(

)sin()sin(
)(

βββ
φ

βββ
φ

βββ
φ

ββ
φ

∑ ∫∫ ∑
∞∞

=
⎪⎭

⎪
⎬

⎫

⎥
⎦

⎤
⎢
⎣

⎡
+

m
m

bb

n
mnnn dyyyxqdyyyxA )sin(),()sin()sin()(

00

8
9 ββββφ  (3.4) 

Since 
2

)sin()sin(
0

bdyyy m

b

n =∫ ββ  for m = n, and 0)sin()sin(
0

=∫ dyyy m

b

n ββ  for 

nm ≠ , Equation 3.4 reduces to: 

∑
∞

⎥
⎦

⎤
+−+−⎢

⎣

⎡

m
mm

m
m

m
m

m
m

m xA
dx

xdA
dx

xdA
dx

xdA
dx

xdA )()()()()( 8
92

2
6

74

4
4

56

6
2

38

8

1 φβφβφβφβφ        

  ∑ ∫
∞

⎥
⎦

⎤
⎢
⎣

⎡
=

m

b

m dyyyxq
b 0

)sin(),(2 β     (3.5) 

Equation 3.5 is an infinite set of ordinary differential equations for )(xmφ  (m = 1, 
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2, 3…, ∞).  It is a unidirectional and linear 8th order differential equation, which can be 

solved by the superposition of the homogeneous part, ),(Φ yxH , and the particular part 

of the equation, ).,(Φ yxP  

),(Φ),(Φ),(Φ yxyxyx PH +=          (3.6a) 

or 

)sin()()sin()()(x)sin( mm ∑∑∑
∞∞∞

+=
m

mPm
m

mHm
m

yxyxy βφβφβφ      (3.6b) 

 

3.3.1 Homogeneous solution, )sin()(),(Φ ∑
∞

=
m

mHmH yxyx βφ  

The homogeneous solution for mode m, ),(xHmφ  is expressed as follows: 

x
Hm

mmex βγφ =)(           (3.7) 

The characteristic equation of the homogeneous part of Equation 3.5 for mode m is: 

08
9

82
7

84
5

86
3

88
1 =+−+− mmmmmmmmm AAAAA ββγβγβγβγ       (3.8) 

in which, mmβγ  are the characteristic roots for function )(xHmφ .  Since ,0≠mβ  

Equation 3.8 can be simplified as: 

09
2

7
4

5
6

3
8

1 =+−+− AAAAA mmmm γγγγ        (3.9) 

Dividing Equation 3.9 by A1 and settling mm ξγ =2 ,  it leads to: 

0234 =++++ edcb mmmm ξξξξ        (3.10) 

in which, 

1

3

A
A

b −= , 
1

5

A
A

c = , 
1

7

A
A

d −= , 
1

9

A
A

e =       (3.11) 

 

Equation 3.10 is a quartic equation and can be solved analytically (Editing group of the 

Manual of Mathematics, 1979).  Four roots for Equation 3.10 are same as four roots in 

following two equations: 

0
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ξξ         (3.12a) 
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0
482

48
2

22 =⎟⎟
⎠
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⎝

⎛

−+

−
−+⎟

⎠
⎞⎜

⎝
⎛ −+−+

cbs
dbsscbsb n

n
ξξ         (3.12b) 

Where, s is any real root for following equation 

0)4()82(48 2223 =−−+−+− dbcesebdcss      (3.13) 

Substituting coefficients in Equation 3.11 to Equation 3.13, it leads to: 

1

54
4

A
A

c =           (3.14) 

2
1

9173 )4(2
)82(

A
AAAA

ebd
−

=−        (3.15) 

3
1

2
719

2
395122 )(4

)4(
A

AAAAAAA
dbce

+−
=−−      (3.16) 

Equation 3.13 becomes: 

023 =+++ hgsfss          (3.17) 

where, 

1

5

2A
A

f −=           (3.18) 

2
1
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4
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AAAA

g
−

=          (3.19) 

3
1

2
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2
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8
)(4

A
AAAAAAA

h
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=        (3.20) 

Let    

3
fts −=           (3.21) 

Then, substitute it to Equation 3.17, it leads to: 
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 (3.22) 

Equation 3.22 becomes: 

03 =++ qptt          (3.23) 

in which, 
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gfp +−=
3

2

          (3.24) 

hfgfq +−=
327

2 3

         (3.25) 

Let 
32
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⎝
⎛=Δ

pq         (3.26) 

If  0>Δ   33
1 22

Δ−−+Δ+−=
qqt     (3.27) 

If 0<Δ   θcos23
1 rt =        (3.28) 

where, 
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2
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3
1 1θ          (3.30) 

Substituting solution t1 to Equation 3.21, it gives: 

31
fts −=           (3.31) 

Using this result to Equations 3.12a and 3.12b, and solving them, all four roots will suit 

to Equation 3.10.  From relation of mm ξγ =2 , mγ  is solved for characteristic Equation 

3.8.  It leads to the following general expression (all 9 possible expressions are detailed 

in Appendix A) for the homogeneous solution, ),( yxHΦ : 

[ ]

[ ]

[ ]

[ ]

)sin(

)sin()sinh()cosh(

)cos()sinh()cosh(

)sin()sinh()cosh(

)cos()sinh()cosh(

)(Φ

43837

43635

21413

21211

y

xxCxC

xxCxC

xxCxC

xxCxC

x m
m

mmmmmmmm

mmmmmmmm

mmmmmmmm

mmmmmmmm

H β

βγβγβγ

βγβγβγ

βγβγβγ

βγβγβγ

∑
∞

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

++

++

++

+

=  (3.32) 

The constants Cdm (d = 1, 2, …, 8) are determined from the boundary conditions at x = 0 

and x = xn = a, and the continuity conditions at intermediate edges (xi, i = 1, 2,3,…, n-1, 

Figure 1.1). 
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3.3.2 Particular solution, )sin()(),(Φ ∑
∞

=
m

mPmP yxyx βφ  

The separation of variables can be applied to present the load q(x,y), in Equation 

3.5 as follows: 

q(x,y) = q0  f(x) g(y)         (3.33) 

in which q0 is the load amplitude, and f(x) and g(y) are the load distribution functions in 

the x and y directions, respectively.  The right-hand side in Equation 3.5 takes the 

following form: 

dyyyxq
b m

b

)sin(),(2

0

β∫  = dyyyfxgq
b m

b

)sin()()(2

0
0 β∫ = )()( 10 ygxfq m   (3.34) 

in which,             

∫=
b

mm dyyyg
b

g
0

1 )sin()(2 β         (3.35) 

The general expression for the particular solution ),,(Φ yxP  for plate strip I when 

subjected to the load expressed in Equation 3.35, can be presented as follows 

∑∑
∞∞

==
m

m
m

m

m
mPmP y

A
gxfqyyx )sin()()sin(),(Φ 8

9

10 β
β

βφ     (3.36) 

The particular solutions ),(Φ yxP for most common strip loadings are shown in Table 

3.1. 

When strip I is subjected to more than one loading (Figure 1.1), the method of 

superposition is employed to determine the particular solution: 

),(Φ),(Φ
1

yxyx
r

j

j
PP ∑

=

=         (3.37) 

in which r represents the total number of loads applied on strip I. 

 

3.3.3 Edge loading function 

When the plate is subjected to line loads in the y direction or to point loads, it is 

divided into strips in such a way that the loads are applied along the inner or outer edges 

of the strips (Figure 1.1).  These loads are expressed in a Lévy type Fourier series, and 

incorporated in the solution as discontinuities in the shear force.  The edge loading 
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functions )(yiψ for most common loadings are shown Table 3.2.  

When the edge xi is subjected to a combination of loads (Figure 1.1), the method 

of superposition is employed to determine the edge loading function: 

)()(
1

yy
s

l

l
ii ∑

=

= ψψ          (3.38) 

where s represents the total number of edge loadings applied on edge xi. 

 

3.3.4 Boundary conditions 

The boundary conditions along the edge x = 0 and x = xn = a are: 

For simply supported edge:  u = 0, w = 0, Nxy = 0, Mx = 0        (3.39) 

clamped edge:    u = 0, v = 0, w = 0, 0=
∂
∂

x
w         (3.40) 

free edge:    Vx = ,ψ  Nx = 0, Nxy = 0, Mx = 0       (3.41) 

 

3.3.5 Continuity conditions 

The following continuity conditions are imposed along the common edge, ixx =  

between strips I and I+1. 

uI = u(I+1),  vI = v(I+1),  wI = w(I+1), 
x

w
x

w II

∂

∂
=

∂
∂ + )1(      (3.42) 

and 

MxI = Mx(I+1), NxI = Nx(I+1) , VxI = Vx(I+1) + ,ψ  NxyI = Nxy(I+1)       (3.43) 

The solution process is based on dividing a rectangular plate into N-plate strips 

(Figure 1.1) depending on the number of loading discontinuities.  Eight N-simultaneous 

equations are generated from the boundary and continuity conditions.  For the 

homogeneous solution of strip I (I = 1, 2,…, N), the constants CdmI (d = 1, 2, …, 8) are 

determined for each mode of deflection m (m = 1, 2, …, ∞).  The particular solution is 

also determined for each strip I and mode m.  The deflection for each strip I is derived 

by summing the homogeneous and particular solutions.  The bending and twisting 

moments, shears and reactions are then determined from the equations for antisymmetric 

cross-ply or angle-ply respectively. 
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3.4 Application 

 The examples presented herein deal with antisymmetric laminated plates, having 

different loading and boundary conditions.  In order to compare the results with ones 

derived using the classical laminated plate theory (CLPT), all the layers are assumed to 

be of the same thickness and density. 

 When comparing the results with ones derived from the finite element program 

ANSYS (ANSYS, Inc., 2007), an eight-node quadrilateral linear layered structural shell 

element (Shell99) is used to model the laminated plates.  This element has both bending 

and membrane capabilities, and can accommodate up to 250 layers.  It can be subjected 

to in-plane and normal loads.  The element has six degrees of freedom at each node. 

 

3.4.1 Example 1: Effect of ply angle and number of layers on deflection and stresses  

     Uniformly loaded antisymmetric angle-ply square plates, having a width in the 

x-direction to plate thickness ratio a/h = 1000, are studied in this section.  The plates are 

simply supported along the edges y = 0 and y = b, and they have varied boundary 

conditions along the edges x = 0 and x = xn = a.  The following material properties are 

considered: E1 = 132.38 GPa (19.2 x 106 psi); E2 = 10.76 GPa (1.56 x 106 psi); G12 = G13 

= 5.65 GPa (0.82 x 106 psi); G23 = 3.61 GPa (0.523 x 106 psi); and ν12 = 0.24.  The ply 

orientation angle is varied from θ = 0º to θ = 90º.  Plates with 2 layers and 10 layers are 

analyzed. 

     Table 3.3 presents the effect of the ply orientation angle (θ) and number of layers 

(n) on the dimensionless deflection ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= w

qa
hEw 4

3
2100ˆ  at the center of plate.  The 

differences in the results among the ASM, CLPT (Khdeir, 1989), and ANSYS are 

negligible.  Figure 3.1 compares the dimensionless deflection at the center of plate 

derived from the ASM and ANSYS methods for different boundary conditions, along the 

x-direction.  The differences between the ASM and ANSYS results are negligible for 

the different ply orientation angles, and the 2-layer and the 10-layer plates.  The 

deflection of the 2-layer plate is larger than deflection of the 10-layer plate, due to the 

bending-extension coupling effect, i.e., Bij in Equation 2.6 decreases as the number of 
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layers (n) increases, and it approaches zero as n approaches ∞.  The larger the number 

of layers in a laminated plate, having a prescribed thickness, the lesser the effect of the 

bending-extension coupling.   

The influence of the boundary conditions at x = 0 and x = a, on the deflection at 

the center of the plate, is quite pronounced when the ply orientation angle θ = 0°.  This 

influence diminishes considerably as θ approaches 90º.  Consequently, if the interest 

lies in having stringent limits on the deflection of a laminated plate with two parallel 

edges, simply supported and various boundary conditions along the other two edges, a 

ply orientation angle of 90º is the angle of choice, regardless of the number of layers.  

Figure 3.1 also shows that the bending-extension coupling effect, in the 2 and 10 layer 

laminates diminishes, as the ply orientation angle θ approaches 0° and 90°; whereas this 

effect is quite pronounced as θ approaches 45°. 

     Table 3.4 presents the effect of ply orientation angle (θ) and number of layers (n), 

on the dimensionless center stresses ,2

2

xx qa
hΣ σ⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,2

2

yy qa
hΣ σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  and 

⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= xyxy qa

hΣ σ2

2

, derived using the ASM and ANSYS.  Figures 3.2a and 3.2b present 

the results for Σx and Σy.  The difference between the results, derived using the two 

methods, is negligible. 

In Figure 3.2a, it is interesting to note that for the 2-layer and 10-layer plates, 

with a boundary condition combination of free at x = 0 and clamped at x = a, Σx is 

negative when the ply-orientation angle θ approaches 0° and positive when θ > 15°.  

This is due to the fact that when θ = 0°, the boundary conditions at x = 0 and x = a 

provide a dominant effect, and a plate strip at the center of the plate, that is parallel to the 

x-axis, acts like a cantilever beam.  As θ increases, the effect from y-direction increases, 

and Σx changes from negative to positive as the “cantilever” effect diminishes.  Figure 

3.2b shows that the bottom-center stresses Σy from the 2-layer plate are always greater 

than ones from the 10-layer plate for all the boundary condition combinations, due to 

bending-extension coupling effect.   

 Table 3.5 shows the convergence study on the dimensionless center deflection 
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and stresses of 2-layer and 10-layer uniformly loaded square laminated plates 

(30º/-30º/…).  Six different boundary conditions along the edges x = 0 and x = a are 

considered.  For the plates under consideration in Table 3.5, the deflection converges 

rapidly and two significant modes (m = 1, 3) are sufficient.   For the stresses, three 

significant modes are sufficient. 

 

3.4.2 Example 2: Effect of in-plane orthotropicity ratio (E1/E2) on deflection and 

stresses 

     A uniformly loaded antisymmetric 4-layer angle-ply square plate 

(45º/-45º/45º/-45º), having a width in the x-direction to plate thickness ratio a/h = 1000, 

is simply supported along the edges y = 0 and y = b, and it has varied boundary 

conditions along the edges x = 0 and x = xn = a.  The material properties are: 

==
2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 0.25, and the orthotropicity ratio ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2

1

E
E  is varied from 

2 to 40.  

     Table 3.6 presents the effect of the orthotropicity ratio on the dimensionless 

deflection ŵ and stress Σx, at the center of the bottom surface of the plate.  As expected, 

the deflections calculated using the ASM and the CLPT (Khdeir, 1989) are identical.  

The deflections calculated, using the ASM and ANSYS, are very close.  The largest 

difference between the two methods ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

w
ww

)

))
100  is -4.59%, when 

40
2

1 =
E
E and free boundary conditions at x = 0 and x = xn = a.  For the prescribed 

boundary condition and loading, the dimensionless deflection ŵ decreases, as the 

orthotropicity ratio 
2

1

E
E  increases. 

     The in-plane stresses (Σx), at the center of the bottom surface of the plate, are listed 

for the ASM and ANSYS.  The maximum difference between the two methods 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Σ
Σ−Σ

ASMx

ASMxANSYSx

,

,,100  is 2.45%, when 40
2

1 =
E
E  and all four boundaries are simply 
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supported.   

 

3.4.3 Example 3: Effect of aspect ratio (a/b)  

     Uniformly-loaded antisymmetric angle-ply rectangular plates, having a width in 

the y-direction to plate thickness ratio b/h = 1000 and seven different aspect ratios of a/b, 

are studied in this example.  The 2-layer and 10-layer plates are simply supported on all 

edges and have the following material properties: E1 = 132.38 GPa (19.2 x 106 psi); E2 = 

10.76 GPa (1.56 x 106 psi); G12 = G13 = 5.65 GPa (0.82 x 106 psi); G23 = 3.61 GPa (0.523 

x 106 psi); and ν12 = 0.24.  The ply orientation angle is varied from θ = 0º to θ = 90º.   

     Figure 3.3 presents the dimensionless deflections at the center of plate derived, 

using the ASM and ANSYS.  The differences between the results of the two methods 

are negligible.  Figure 3.3 shows that the dimensionless deflection ŵ increases as the 

aspect ratio a/b increases.  When the aspect ratio a/b ≥ 1 and the ply orientation angle, θ, 

approaches 90º, where the ply length is the shortest and is equal to b, the dimensionless 

deflection ŵ approaches the same value.  When the aspect ratio a/b < 1, the deflection 

diminishes considerably, since the shorter edge of length has a dominant effect and the 

deflections approach the smaller value when θ = 0º.  

 

3.4.4 Example 4: Square plate subjected to a patch load  

     An antisymmetric 6-layer angle-ply (-15/-45/-75/75/45/15) square plate, with a 

width to plate thickness ratio a/h = 1000, has the following material properties: E1 = 

132.38 GPa (19.2 x 106 psi); E2 = 10.76 GPa (1.56 x 106 psi); G12 = G13 = 5.65 GPa (0.82 

x 106 psi); G23 = 3.61 GPa (0.523 x 106 psi); and ν12 = 0.24.  The plate is subjected to a 

patch load (Figure 3.4), and it is simply supported along the edges y = 0 and y = b, 

clamped at x = 0, and simply supported at x = a.       

The ASM method is used to generate the contour of the dimensionless deflection 

(ŵ) in Figure 3.4.  ŵ derived from the ASM at the center of the plate, and at the center 

of patch load are 0.0101 and 0.0155, respectively.  The corresponding values from 

ANSYS are 0.0100 and 0.0157, respectively. 

 

 



www.manaraa.com

 

 
 32 

3.4.5 Example 5: Square plate subjected to a point load 

     An antisymmetric 8-layer angle-ply (-30/-40/-50/-60/60/50/40/30) square plate has 

a width to plate thickness ratio a/h = 1000, and it is subjected to a concentrated load 

(Figure 3.5).  The plate is simply supported along the edges y = 0 and y = b, clamped at 

x = 0 and free at x = a.  The material properties are identical to the ones for the plate 

subjected to the patch load in Example 4.   

     The ASM method is used to generate the contour of the dimensionless deflection 

(ŵ) in Figure 3.5; ŵ derived from the ASM at the center of the plate, at the load point, 

and the maximum deflection (at x = 17a/40 and y = 3a/10) are: 1.400, 1.4530, and 1.7410, 

respectively.  The corresponding values from ANSYS are 1.4003, 1.4830, and 1.7412 

respectively. 

     Examples 4 and 5 illustrate the advantage of the ASM over other analytical 

methods, which are not capable to solve the plate problems in Figures 3.4 and 3.5.  

 

3.5 Summary and Conclusions 

     An analytical method has been developed for the analysis of antisymmetric 

laminated composite plates in this chapter.  The method is called the analytical strip 

method (ASM), and it is based on dividing the plate into strips according to loading 

discontinuities.  The plate is limited to two parallel edges being simply supported (y = 0 

and y = b), and varied boundary conditions along the other two edges.  In this method, a 

laminated plate can be subjected to any combination of patch, uniform, line, and 

concentrated loads.  The solution is carried out by deriving an 8th order governing 

differential equation, and applying the boundary and/or continuity conditions along the 

edges of each plate strip.  The results derived using the ASM are in excellent agreement 

with ones derived using the finite element program ANSYS, and, where applicable, the 

results presented in the literature for the classical laminated plate theory.  The primary 

advantage of the ASM over other single series analytic solutions lies in its applicability 

to different loading and boundary conditions, as illustrated in Examples 4 and 5. 
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       Table 3.1.  Particular solution ),( yxPIΦ  for strip I 
Load Case ),( yxPIΦ  

Case 1 - Partial uniform load q0   
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Case 3 – Line load Lx  
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Case 4 – Zero load  
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     Table 3.2.  Edge loading function )(yiψ  at x = xi 
Load Case )(yiψ  

Case 1 – Partial line load Ly  
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Case 2 – Line load Ly in y direction  
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S at x =0
S at x=a 2

S at x =0
C at x=a 2

C at x =0
C at x=a 2

F at x =0
F at x=a 2

F at x =0
S at x=a 2

F at x =0
C at x=a 2

CLPT3 N/A6 N/A N/A N/A N/A N/A
2 ASM4 1.1953 0.5264 0.2630 15.5133 7.4793 2.5973

ANSYS5 1.1960 0.5272 0.2628 15.5555 7.4873 2.6026
CLPT N/A N/A N/A N/A N/A N/A

10 ASM 1.1953 0.5264 0.2630 15.5133 7.4793 2.5973
ANSYS 1.1960 0.5272 0.2628 15.5555 7.4873 2.6026

CLPT 1.6184 1.0218 0.6657 12.3713 4.7491 2.8627
2 ASM 1.6190 1.0222 0.6660 12.3756 4.7505 2.8636

ANSYS 1.6220 1.0231 0.6662 12.6235 4.7280 2.8680
CLPT 0.8187 0.5188 0.3364 10.3035 2.7365 1.6391

10 ASM 0.8191 0.5190 0.3366 10.3084 2.7376 1.6398
ANSYS 0.8225 0.5199 0.3369 10.6311 2.7500 1.6440

CLPT 1.5807 1.1675 0.8628 7.8765 3.5696 2.6432
2 ASM 1.5810 1.1677 0.8634 7.8805 3.5707 2.6445

ANSYS 1.5870 1.1709 0.8641 8.0484 3.4540 2.6480
CLPT 0.7391 0.5590 0.4229 4.7291 1.8069 1.3554

10 ASM 0.7398 0.5590 0.4232 4.7308 1.8074 1.3550
ANSYS 0.7435 0.5608 0.4238 4.8106 1.8150 1.3600

CLPT 1.6185 1.2996 1.0352 4.3732 2.6983 2.2162
2 ASM 1.6203 1.3011 1.0357 4.3758 2.6993 2.2173

ANSYS 1.6220 1.3035 1.0370 4.4457 2.6010 2.2190
CLPT 0.8187 0.6898 0.5786 2.2621 1.3936 1.1913

10 ASM 0.8191 0.6902 0.5782 2.2632 1.3943 1.1919
ANSYS 0.8225 0.6915 0.5799 2.2540 1.3970 1.1940

CLPT N/A N/A N/A N/A N/A N/A
2 ASM 1.1949 1.0723 0.9524 1.2497 1.2227 1.1082

ANSYS 1.1960 1.0730 0.9529 1.2625 1.2216 1.1077
CLPT N/A N/A N/A N/A N/A N/A

10 ASM 1.1949 1.0723 0.9524 1.2497 1.2227 1.1082
ANSYS 1.1960 1.0730 0.9529 1.2625 1.2216 1.1077

6 N/A = Results are not available

2 C = Clamped, F = Free, S = Simply supported

60°

Table 3.3. Effect of ply angle (θº ) and number of layers (n ) on the center of an antisymmetric square 
laminated plate (θº/-θº/θº/-θº/ …) a/h =1000, E 1 =132.38 GPa, E 2 =10.76 GPa, G 12 =G 13 =5.65 GPa, 
G 23 =3.61 GPa, ν 12 =0.24

0°

30°

45°

ŵ 1  at center of plate
θº n Method

1

4 ASM - Analytical Strip Methed (present method)
5 ANSYS - Finite Element Analysis Program (ANSYS Inc., 2007)

90°

3 CLPT - Classical Laminated Plate Theory by Khdeir (Khdeir, 1989)
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Σ x Σ y Σ xy Σ x Σ y Σ xy Σ x Σ y Σ xy Σ x Σ y Σ xy Σ x Σ y Σ xy Σ x Σ y Σ xy

ASM2 0.7182 0.0560 0.0000 0.3939 0.0195 0.0000 0.2620 0.0029 0.0000 0.0310 0.7459 0.0000 0.4186 0.3586 0.0000 -0.2140 0.1086 0.0000
2 ANSYS3 0.7184 0.0559 0.0000 0.3943 0.0198 0.0000 0.2657 0.0029 0.0000 0.0314 0.7457 0.0000 0.4192 0.3582 0.0000 -0.2133 0.1082 0.0000

% Diff.4 0.027 -0.302 0.106 0.099 1.711 -0.044 1.385 -0.158 1.171 1.274 -0.021 1.325 0.146 -0.105 0.232 -0.336 -0.374 -0.217
ASM 0.7182 0.0560 0.0000 0.3939 0.0195 0.0000 0.2620 0.0029 0.0000 0.0310 0.7459 0.0000 0.4186 0.3586 0.0000 -0.2140 0.1086 0.0000

10 ANSYS 0.7184 0.0559 0.0000 0.3943 0.0198 0.0000 0.2657 0.0029 0.0000 0.0314 0.7457 0.0000 0.4192 0.3582 0.0000 -0.2133 0.1082 0.0000
% Diff. 0.027 -0.302 0.018 0.099 1.711 0.019 1.385 -0.158 1.406 1.274 -0.021 1.185 0.146 -0.105 0.204 -0.336 -0.374 -0.491
ASM 0.5049 0.2193 0.2116 0.3657 0.1469 0.1479 0.2868 0.1056 0.1125 0.5717 0.8270 0.3015 0.4862 0.3795 0.2039 0.2427 0.2079 0.0960

2 ANSYS 0.5058 0.2193 0.2121 0.3661 0.1467 0.1481 0.2868 0.1052 0.1125 0.5780 0.8278 0.3042 0.4878 0.3809 0.2048 0.2441 0.2088 0.0966
% Diff. 0.186 0.022 0.232 0.118 -0.169 0.145 0.006 -0.354 -0.025 1.094 0.098 0.890 0.325 0.360 0.458 0.589 0.456 0.640
ASM 0.3388 0.1396 0.1659 0.2530 0.0978 0.1225 0.2014 0.0727 0.0965 0.7003 0.7734 0.4222 0.4025 0.2627 0.2112 0.2178 0.1470 0.1144

10 ANSYS 0.3397 0.1397 0.1663 0.2533 0.0976 0.1226 0.2013 0.0724 0.0964 0.6989 0.7740 0.4219 0.4037 0.2638 0.2119 0.2174 0.1470 0.1143
% Diff. 0.270 0.066 0.271 0.109 -0.177 0.094 -0.036 -0.410 -0.091 -0.205 0.075 -0.063 0.288 0.428 0.324 -0.179 0.025 -0.128
ASM 0.3182 0.3190 0.2081 0.2677 0.2530 0.1697 0.2305 0.2044 0.1415 0.5635 0.9915 0.4994 0.3946 0.5298 0.2988 0.3065 0.3981 0.2279

2 ANSYS 0.3186 0.3186 0.2085 0.2674 0.2518 0.1695 0.2298 0.2028 0.1408 0.5668 0.9934 0.5027 0.3944 0.5295 0.2989 0.3056 0.3968 0.2273
% Diff. 0.118 -0.124 0.183 -0.106 -0.459 -0.126 -0.295 -0.796 -0.473 0.578 0.190 0.666 -0.049 -0.052 0.026 -0.302 -0.331 -0.272
ASM 0.2104 0.2108 0.1678 0.1796 0.1728 0.1403 0.1563 0.1442 0.1196 0.5277 0.7888 0.5237 0.2915 0.3601 0.2593 0.2282 0.2746 0.2001

10 ANSYS 0.2104 0.2104 0.1676 0.1791 0.1719 0.1398 0.1556 0.1431 0.1185 0.5316 0.7951 0.5280 0.2956 0.3659 0.2634 0.2316 0.2795 0.2034
% Diff. 0.002 -0.193 -0.104 -0.252 -0.526 -0.379 -0.439 -0.750 -0.958 0.733 0.805 0.823 1.392 1.615 1.562 1.496 1.789 1.642
ASM 0.2171 0.4983 0.2091 0.1910 0.4056 0.1696 0.1717 0.3375 0.1402 0.2575 1.0005 0.3638 0.2342 0.7024 0.2754 0.2026 0.5789 0.2268

2 ANSYS 0.2193 0.5058 0.2121 0.1931 0.4129 0.1725 0.1716 0.3362 0.1399 0.2591 1.0070 0.3662 0.2362 0.7099 0.2783 0.2045 0.5861 0.2295
% Diff. 0.999 1.512 1.419 1.106 1.800 1.693 -0.085 -0.387 -0.221 0.608 0.653 0.667 0.845 1.065 1.056 0.940 1.244 1.193
ASM 0.1379 0.3340 0.1636 0.1264 0.2908 0.1433 0.1165 0.2537 0.1258 0.2106 0.7377 0.3429 0.1672 0.4957 0.2357 0.1508 0.4307 0.2056

10 ANSYS 0.1397 0.3397 0.1663 0.1281 0.2961 0.1458 0.1181 0.2586 0.1282 0.2119 0.7427 0.3452 0.1689 0.5015 0.2384 0.1523 0.4359 0.2080
% Diff. 1.270 1.709 1.668 1.324 1.807 1.750 1.371 1.942 1.882 0.614 0.680 0.677 1.008 1.175 1.164 0.996 1.219 1.192
ASM 0.0556 0.7134 0.0000 0.0637 0.6409 0.0000 0.0716 0.5700 0.0000 0.0138 0.7367 0.0000 0.0344 0.7252 0.0000 0.0426 0.6830 0.0000

2 ANSYS 0.0559 0.7184 0.0000 0.0640 0.6457 0.0000 0.0718 0.5747 0.0000 0.0140 0.7418 0.0000 0.0347 0.7302 0.0000 0.0423 0.6792 0.0000
% Diff. 0.517 0.689 0.651 0.458 0.742 0.300 0.401 0.819 -0.925 1.336 0.692 -1.463 0.840 0.688 0.089 -0.600 -0.565 0.179
ASM 0.0556 0.7134 0.0000 0.0637 0.6409 0.0000 0.0716 0.5700 0.0000 0.0138 0.7367 0.0000 0.0344 0.7252 0.0000 0.0426 0.6830 0.0000

10 ANSYS 0.0559 0.7184 0.0000 0.0640 0.6457 0.0000 0.0718 0.5747 0.0000 0.0140 0.7418 0.0000 0.0347 0.7302 0.0000 0.0423 0.6792 0.0000
% Diff. 0.517 0.689 0.646 0.458 0.742 0.632 0.401 0.819 0.802 1.336 0.692 -0.312 0.840 0.688 -1.195 -0.600 -0.565 -0.399

F at x = 0
and  F at x = a1

F at x = 0
and  S at x = a1

F at x = 0
and  C at x = a1

60º

4 % Diff. = percent difference:

90º

1  C = Clamped, F = Free, S = Simply supported

3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)

2 ASM - Analytical Strip Methed

Table 3.4. Effect of ply angle (θº ) and number of layers (n ) on the center stresses Σ(a/2, a/2) =  (h 2 /a 2 q )σ  at bottom surface of a square plate (θº/-θº/θº/-
θº/…)  a/h  = 1000, E 1  = 132.38 GPa, E 2  = 10.76 GPa, G 12  = G 13  = 5.65 GPa, G 23  = 3.61 GPa, ν 12  = 0.24

0º

30º

45º

S at x = 0
and  S at x = a1

S at x = 0
and  C at x = a1θº n Method

C at x = 0
and  C at x = a1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

Σ−Σ

ASM

ASMANSYS100
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ŵ 4 Σ x
4 Σ y

4 Σ xy
4 ŵ Σ x Σ y Σ xy ŵ Σ x Σ y Σ xy

1 1.6525 0.5257 0.2392 0.2206 1.0535 0.3869 0.1660 0.1572 0.6952 0.3086 0.1238 0.1222
3 -0.0366 -0.0256 -0.0251 -0.0112 -0.0343 -0.0260 -0.0242 -0.0115 -0.0322 -0.0265 -0.0233 -0.0118
5 0.0035 0.0059 0.0065 0.0028 0.0035 0.0059 0.0065 0.0028 0.0035 0.0059 0.0064 0.0028
7 -0.0007 -0.0023 -0.0025 -0.0011 -0.0007 -0.0023 -0.0025 -0.0011 -0.0007 -0.0022 -0.0025 -0.0011
9 0.0002 0.0011 0.0012 0.0005 0.0002 0.0011 0.0012 0.0005 0.0002 0.0011 0.0012 0.0005

Sum5 1.6190 0.5049 0.2193 0.2116 1.0222 0.3657 0.1469 0.1479 0.6660 0.2868 0.1056 0.1125
1 0.8395 0.3595 0.1544 0.1769 0.5378 0.2730 0.1116 0.1331 0.3539 0.2206 0.0856 0.1067
3 -0.0225 -0.0260 -0.0191 -0.0140 -0.0209 -0.0252 -0.0180 -0.0135 -0.0193 -0.0245 -0.0170 -0.0131
5 0.0024 0.0066 0.0054 0.0037 0.0024 0.0066 0.0053 0.0036 0.0024 0.0065 0.0052 0.0036
7 -0.0005 -0.0025 -0.0021 -0.0014 -0.0005 -0.0025 -0.0021 -0.0014 -0.0005 -0.0025 -0.0021 -0.0014
9 0.0001 0.0012 0.0010 0.0007 0.0001 0.0012 0.0010 0.0007 0.0002 0.0012 0.0010 0.0007

Sum 0.8191 0.3388 0.1396 0.1659 0.5190 0.2530 0.0978 0.1225 0.3366 0.2014 0.0727 0.0965

ŵ Σ x Σ y Σ xy ŵ Σ x Σ y Σ xy ŵ Σ x Σ y Σ xy

1 12.4209 0.5972 0.8546 0.3139 4.7898 0.5097 0.4036 0.2147 2.9006 0.2676 0.2313 0.1075
3 -0.0485 -0.0295 -0.0324 -0.0143 -0.0424 -0.0275 -0.0287 -0.0127 -0.0400 -0.0278 -0.0276 -0.0130
5 0.0038 0.0063 0.0070 0.0030 0.0037 0.0061 0.0067 0.0029 0.0036 0.0061 0.0067 0.0029
7 -0.0007 -0.0023 -0.0025 -0.0011 -0.0007 -0.0023 -0.0025 -0.0011 -0.0007 -0.0023 -0.0025 -0.0011
9 0.0002 0.0011 0.0012 0.0005 0.0002 0.0011 0.0012 0.0005 0.0002 0.0011 0.0012 0.0005

Sum 12.3756 0.5717 0.8270 0.3015 4.7505 0.4862 0.3795 0.2039 2.8636 0.2427 0.2079 0.0960
1 10.3429 0.7288 0.7976 0.4381 2.7646 0.4272 0.2822 0.2248 1.6649 0.2414 0.1651 0.1274
3 -0.0369 -0.0336 -0.0287 -0.0189 -0.0292 -0.0296 -0.0236 -0.0163 -0.0273 -0.0286 -0.0223 -0.0157
5 0.0028 0.0072 0.0061 0.0040 0.0026 0.0069 0.0057 0.0038 0.0026 0.0068 0.0057 0.0038
7 -0.0005 -0.0026 -0.0022 -0.0015 -0.0005 -0.0026 -0.0022 -0.0014 -0.0005 -0.0026 -0.0022 -0.0014
9 0.0001 0.0012 0.0010 0.0007 0.0002 0.0012 0.0010 0.0007 0.0001 0.0012 0.0010 0.0007

Sum 10.3084 0.7003 0.7734 0.4222 2.7376 0.4025 0.2627 0.2112 1.6398 0.2178 0.1470 0.1144

5 Sum =

4

3 m  = mode of deflection

2

30º

10

2 n  = number of layers

Table 3.5. Convergence study for ASM on the center deflection and stresses of an antisymmetric angle-ply square plates (30 º/-
30º/30º/-30º/…)  a/h  = 1000, E 1  = 132.38 GPa, E 2  = 10.76 GPa, G 12  = G 13  = 5.65 GPa, G 23  = 3.61 GPa, ν 12  = 0.24

S at x = 0 and  S at x = a 1 S at x = 0 and  C at x = a 1 C at x = 0 and  C at x = a 1

θº n 2 m 3

30º

2

10

1  C = Clamped; F = Free; S = Simply supported

θº n m F at x = 0 and  F at x = a 1 F at x = 0 and  S at x = a 1 F at x = 0 and  C at x = a 1

;100ˆ
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ŵ Σ x ŵ Σ x ŵ Σ x ŵ Σ x ŵ Σ x ŵ Σ x

CLPT4 3.214 N/A7 2.214 N/A 1.531 N/A 10.47 N/A 6.234 N/A 4.446 N/A
ASM5 3.214 0.257 2.214 0.215 1.531 0.186 10.47 0.106 6.234 0.195 4.446 0.144

ANSYS6 3.209 0.257 2.212 0.215 1.529 0.186 10.40 0.106 6.207 0.195 4.430 0.144
CLPT 1.000 N/A 0.747 N/A 0.558 N/A 5.571 N/A 2.345 N/A 1.747 N/A
ASM 1.000 0.216 0.747 0.184 0.558 0.160 5.571 0.415 2.345 0.274 1.748 0.215

ANSYS 0.994 0.215 0.741 0.184 0.553 0.160 5.347 0.416 2.299 0.274 1.710 0.214
CLPT 0.542 N/A 0.412 N/A 0.313 N/A 3.657 N/A 1.343 N/A 1.010 N/A
ASM 0.542 0.202 0.412 0.176 0.313 0.153 3.658 0.569 1.343 0.298 1.011 0.235

ANSYS 0.541 0.206 0.409 0.176 0.310 0.153 3.505 0.571 1.320 0.299 0.986 0.234
CLPT 0.372 N/A 0.285 N/A 0.218 N/A 2.738 N/A 0.943 N/A 0.712 N/A
ASM 0.372 0.198 0.285 0.173 0.218 0.151 2.738 0.647 0.943 0.309 0.712 0.243

ANSYS 0.372 0.202 0.283 0.173 0.216 0.150 2.621 0.651 0.931 0.309 0.695 0.243
CLPT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ASM 0.283 0.196 0.218 0.172 0.167 0.150 2.191 0.696 0.727 0.315 0.550 0.248

ANSYS 0.284 0.201 0.217 0.172 0.166 0.149 2.090 0.700 0.720 0.315 0.537 0.248

3 C = Clamped, F = Free, S = Simply supported

40

1

2

10

20

30

5 ASM - Analytical Strip Methed (present method)

7 N/A = Result is not available

6 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)

4 CLPT - Classical Laminated Plate Theory by Khdeir (Khdeir, 1989)

Table 3.6. Effect of in-plane orthotropicity ratio, E 1 /E 2  on the dimensionless center deflection, ŵ 1, 
and stress, Σ x

2 , of a four layer square laminated plate (45º/-45º/45º/-45º) a/h  = 1000,   E 1 /E 2  = 2, 
10, 20, 30 and 40,  G 12 /E 2  = G 13 /E 2  = 0.6,  G 23 /E 2  =  0. 5, ν 12  = 0.25 

Method

2

F at x =0
S at x=a 3

F at x =0
C at x=a 3

S at x =0
S at x=a 3

S at x =0
C at x=a 3

C at x =0
C at x=a 3

F at x =0
F at x=a 3
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Figure 3.1. Deflection at the center of a uniformly loaded antisymmetric angle-ply 

square plate, ,
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Figure 3.2a. Stress in the x-direction at the center of bottom surface on a 
uniformly loaded antisymmetric angle-ply square plate, 
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Figure 3.2b. Stress in the y-direction at the center of bottom surface on a uniformly 

loaded antisymmetric angle-ply square plate, yy qa
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E2 = 10.76 Gpa 
G12 = G13  
        = 5.65 Gpa 
G23 = 3.61 Gpa 
ν12 = 0.24 

 C = Clamped 
 S = Simply 
      Supported 
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Fig. 3.5. Contour of the dimensionless deflection, w
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antisymmetric angle-ply 8-layer (-30°/-40°/-50°/-60°/60°/50°/40°/30°) square 
laminated plate subjected to a concentrated load, P   
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CHAPTER 4 

BENDING-EXTENSION COUPLING OF STIFFENED AND CONTINUOUS 

ANTISYMMETRIC LAMINATED PLATES 
 
4.1 Introduction 

Stiffened plates are widely used in all kinds of circumstances, such as bridges, 

ship hulls or decks, and aircraft structures.  An economical design is achieved through a 

proper selection of the plate and the stiffener sizes.  Numerous studies have analyzed 

stiffened plates, and earlier researchers simulated stiffened plates with grillage models 

(Yettram and Hussain, 1965) or orthotropic models (Schade, 1940).  A more accurate 

model is achieved by representing the plate and stiffeners separately, and maintaining 

compatibility between them.  Different analytical methods and numerical techniques, 

such as the Rayleigh-Ritz method (Liew, Lam, and Chow, 1990; Liew, Xiang, 

Kitipornchai, and Meek, 1995; Xiang, Liew, and Kitipornchai, 1996; Liew and Lam, 

1990), the finite element method (Deb and Booton, 1988; Biswal and Ghosh, 1994; 

Sadek and Tawfik, 2000), and the constraint method based on finite elements (Rossow 

and Ibrahimkhail, 1978) have been used to solve the problem.  In this chapter, analytical 

solutions for bending-extension coupling of stiffened and continuous antisymmetric 

laminated plates (Figure 4.1) are obtained by using ASM. 

 

4.2 Governing Differential Equation  

For a stiffened and continuous antisymmetric laminated plate, subjected to a 

transverse load q(x, y), the governing differential equation is the same as one shown in 

Equation 2.13:  

),(ΦΦΦΦΦ
8

8

962

8

744

8
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1 yxq
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A =
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+
∂∂

∂
+

∂∂
∂

+
∂∂

∂
+

∂
∂    (2.13) 

The major difference between this kind of plate and a simple plate discussed in previous 

chapter is that beam elements are involved in stiffened and continuous plate.  Solving a 

plate problem, with beams supported on edges or interior plate, is a very challenging 

topic for analytical methods.  An endeavor will be made to solve this problem by the 
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analytical strip method, in this chapter in conjunction with beam elements as boundary 

and continuity conditions.  

 

4.3 Beam Elements 

For the Jth beam (J = 1, 2, …, S), located along the line x = xJ (J = 1, 2, …, S) 

(Figure 4.1), the axial rotation is assumed to be fully restrained at the supports (y = 0 and 

y = b).  Considering the bending, torsional and warping stresses, the following pair of 

differential equations can be derived from the equilibrium of the beam element 

(Salamoun and Harik, 1985; Harik and Salamoun, 1988):     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 4

4

1
dy
WdbKDQ bJ

JEbJ                 (4.1) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 4

4
3

2

2

32
dy

dKb
dy

dbKDT bJ
J

bJ
JEbJ

φφ             (4.2) 

in which,  

,1
bD
IEK

E

bJbJ
J =  ,2

bD
JGK
E

bJbJ
J =  33

bD
CEK

E

wJbJ
J =        (4.3) 

)1(12 2112

3

νν−
=

hED x
E              (4.4) 

QbJ and TbJ are lateral load and twisting moment per unit length, applied to the beam 

element at the line x = xJ (J = 1, 2, … S); DE is equivalent flexural rigidity of orthotropic 

plate; WbJ and bJφ  are deflection and angle of twist of the beam; K1, K2, and K3 are 

dimensionless constants chosen for convenience; EbIb = flexural rigidity of the beam; 

GbJb = torsional rigidity of the beam; and, EbCw = warping rigidity of the beam. 

 Because of this beam element, beam support conditions are added to boundary 

and continuity conditions in Equations (3.39) through (3.43).  The boundary conditions 

at beam support location are: 

,bWw =  ,bx
w φ=
∂
∂

−  ,bx QR =  bx TM =         (4.5) 

The continuity conditions at beam support location along the common edge, ixx =  

between strips I and I+1, are: 
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uI = u(I+1),  vI = v(I+1),  wI = w(I+1) = wb, ,)1(
b

II

x
w

x
w φ−=

∂
∂

=
∂
∂ +

        (4.6) 

Tb = Mx(I+1) - MxI, NxI = Nx(I+1) , Qb = Vx(I+1) - VxI ,  NxyI = Nxy(I+1)     (4.7) 
 

4.4 Application 

For illustrative purposes, the numerical applications address verifications of 

different loading and boundary conditions.  All the layers are assumed to be of the same 

thickness and density, and they are made of the same orthotropic material.  The 

following material parameters are used: 

 E1 = 132.38 GPa (19.2 x 106 psi),   E2 = 10.76 GPa (1.56 x 106 psi), 

 G12 = G13 = 5.65 GPa (0.82 x 106 psi),   G23 = 3.61 GPa (0.523 x 106 psi) 

ν12 = 0.24 

In the following plate bending analysis, uniformly distributed load, concentrated 

load, and patch load are considered.  The edges y = 0 and y = b are invariably assumed 

to be simply supported.  Similarly to Chapter 3, the eight-node, Shell99 (ANSYS, Inc., 

2007), and quadrilateral linear layered structural shell element of ANSYS, is used for the 

comparison.   

 

4.4.1 Example 1: Edge beam effect for a square antisymmetric angle-ply plate  

 Uniformly-loaded antisymmetric angle-ply square plates, having a width in the 

x-direction to plate thickness ratio a/h = 1000, are studied in this section.  The plates are 

simply supported along the edges at y = 0, y = b, and x = 0, with varied stiffness beam 

supported at x = xn = a.  The ply orientation angle is varied from θ = 0º to θ = 90º.  

Plates with 2 layers and 10 layers are analyzed. 

This study shows edge beam effect by changing beam stiffness, K1, which takes 

values 0.6221, 1.5, 10, and 30.  For comparison, results using simply supported and 

clamped edges at x = xn = a are presented.   

Figure 4.2 shows the dimensionless deflections ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= w

qb
hEw 4

3
2100ˆ  at the center 

of plate, obtained from ANSYS and ASM.  The variation between ASM and ANSYS 
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results is negligible.  When K1= 0.6221, which is the weakest beam stiffness in this 

investigation, the center deflection is greatest and tends to be like free edge.  When K1= 

30, which is the strongest beam stiffness in this investigation, the center deflection is 

least and approaches the result under the clamped edge.  Under same loading and 

boundary conditions, the deflections with 2 layers plate are always larger than ones with 

10 layers plate.  It shows stronger bending-extension coupling effect in 2-layer 

antisymmetric angle-ply plate than in 10-layer antisymmetric angle-ply plate.   

Table 4.1 shows the convergence study on the dimensionless center deflection of 

2-layer and 10-layer uniformly loaded square laminated plates (45º/-45º/…), with four 

different boundary beams at x = a.  It is clear that for any beam stiffness, sufficiently 

converged deflection results can be obtained as series item m up to 5. 

Figure 4.3 shows the dimensionless stress ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= xx qb

hΣ σ2

2

 at the point with x/a 

= 0.975 and close to the beam support edge obtained from ANSYS and ASM.  The 

maximum difference between ANSYS and ASM is 1.75%, which occurs when K1 is 30 

and ply orientation angle is 15 degree.  The stress increases when K1 (beam stiffness) 

increases.  When K1 = 30, the stress Σx closes to one under clamped edge condition.  

Under the same loading and boundary conditions, the stresses on the 2-layer plate are 

always larger than those on the 10-layer plate.  It also shows a stronger 

bending-extension coupling effect in 2-layer antisymmetric angle-ply plate than in 

10-layer antisymmetric angle-ply plate.  Due to the moment capacity of the beam, the 

stresses on the observed point are always negative for all the beams with different 

stiffnesses. 

Tables 4.2 shows the convergence study on the dimensionless center stresses of 

2-layer and 10-layer uniformly loaded square angle-ply laminated plates (45º/-45º/…), 

with four different boundary beams at x = a.  It indicates that sufficiently converged 

stress results can also be obtained when m = 5. 

 

4.4.2 Example 2: Two interior beams for rectangular antisymmetric angle-ply plate  

A uniformly-loaded antisymmetric angle-ply rectangular plates, having a width in 
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the y-direction to plate thickness ratio b/h = 1000 and a/b = 2 (a – x direction length of 

plate, b – y direction length of plate), is studied in this example.  The plate is simply 

supported on y = 0 and y = b, free edges on x = 0 and x = a= 2b; two beams which are 

parallel to y-axis support the inside plate.  One beam is located at x/a = 0.25, and 

another beam is placed at x/a = 0.925.  Beam stiffness, K1 = 1.5 for both beams is used. 

 This investigation shows the effect of the ply-orientation angle on deflections and 

stresses at center, edges, and beam positions of plate with two inside beam supports.   

Figure 4.4 shows loading and support conditions for this example and displays the 

contour of dimensionless deflection ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= w

qb
hEw 4

3
2100ˆ with 10-layer (-45/45)5 

rectangular laminated plate, obtained using ASM.  Table 4.3 displays the effects of ply 

angle and number of layers on dimensionless deflections at left middle edge (x = 0, y = 

b/2), middle point of the beam 1 (x = a/4, y = b/2), center of the plate (x = a/2, y = b/2), 

middle point of the beam 2 (x = 0.925a, y = b/2), and the middle of right edge (x = a, y = 

b/2).  The maximum difference in deflection between ANSYS and ASM is 1.664%, and 

that occurs at the middle of right edge of a 2-layer plate, when ply orientation-angle θ = 

30°.  Most of the deflection differences between ANSYS and ASM are smaller than 

1.0% (Table 4.3). 

The deflection of 2-layer plate is larger than the deflection of 10-layer plate, due 

to the effect of bending-extension coupling stiffness coefficients.  All the minimum 

deflections for the five points observed on both 2-layer and 10-layer plate occur when θ = 

90°, because ply is at the shortest distance at this orientation.  The maximum deflections 

at the center of the two beam positions on both 2-layer and 10-layer plate occur when θ = 

0°, because they take over maximum loads from adjacent areas.  The deflections for the 

left edge and center of the plate follow similar trends, when ply orientation angle varies 

from 0° to 90°.  Due to the bending-extension coupling effect, they start at same 

deflection for 2-layer and 10-layer plates as ply orientation angle is 0°; increased 

deflection difference between 2-layer and 10-layer plates when ply orientation angle 

increases; and end at same deflection for 2-layer and 10-layer plates, when ply 

orientation angle reaches 90°.  Whereas the deflections on other three points are not 
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pronouncedly affected by bending-extension coupling effect because of the beam effect 

(see Table 4.3). 

Table 4.4 displays the effect of ply angle and number of layers on dimensionless 

stresses ,2

2

xx qb
hΣ σ⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,2

2

yy qb
hΣ σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  and ⎥

⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= xyxy qb

hΣ σ2

2

, at the middle point of 

beam 1 (x = a/4, y = b/2), center of the plate (x = a/2, y = b/2), and the middle point of 

beam 2 (x = 0.925a, y = b/2).  The maximum stress difference between ANSYS and 

ASM is 4.88% and that occurs at the center of 2-layer plate, when ply angle θ = 60° for 

Σxy.  Differences of Σx and Σy, between ANSYS and ASM, are smaller than the 

difference of Σxy between ANSYS and ASM.  Most of the stress differences between 

ANSYS and ASM are smaller than 3.0% (Table 4.4).  At the center of the plate, Σx 

decreases from maximum value at θ = 0° to minimum value at θ = 90°, for both 2-layer 

and 10-layer plates; whereas Σy increases from minimum value at θ = 0° to maximum 

value at θ = 90°, for both 2-layer and 10-layer plates.  Shear stresses Σxy have similar 

values for 2-layer and 10-layer plates, are close to zero at points θ = 0° and θ = 90°, and 

reach maximum values when θ = 60°.  The stresses on two beam positions have similar 

trends.   

 

4.4.3 Example 3: Two points supported rectangular antisymmetric angle-ply plate  

The ASM can be applied to a laminated plate over point supports.  A 

uniformly-loaded antisymmetric angle-ply rectangular plate, having a width in the 

y-direction to plate thickness ratio b/h = 1000 and a/b = 2 (a – x direction length of plate, 

b – y direction length of plate), is studied in this example.  The plate is simply supported 

on y = 0 and y = b, and free edges on x = 0 and x = a= 2b.  Two points support inside at 

x = 0.4b, y = b/2 and x = 1.7b, y = b/2, respectively. 

The plate is divided into strips in such a way that the point supports are located 

alone the edges of the strips.  The solution to this problem is achieved by releasing the 

deflection at both point supports, and then by building the flexibility matrix to determine 

the supports’ reactions, which are required to cancel these deflections.  Figure 4.5 shows 

loading and support conditions for this example, and displays the contour of 
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dimensionless deflection ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= w

qb
hEw 4

3
2100ˆ  with 2-layer (-45/45) rectangular 

laminated plate obtained by using ASM.   

Figure 4.6 shows the dimensionless deflections at middle edges of left and right 

plate, and the center of the plate.  The maximum difference between ASM and ANSYS 

results is 3.22%, which occurs at middle right edge of 10-layer plate, when ply 

orientation angle θ = 90°.  Most of the differences between the results from these two 

methods are less than 2%.  Under a prescribed loading and boundary condition, the 

deflection at the center of the plate with 2 layers is always larger than one with 10 layers. 

 However, due to the effect from inside point support positions, deflections at both 

middle edges follow a different trend to the one in the middle of plate.  At the middle 

point of left edge, the deflections of the 2-layer plate are smaller than those of the 

10-layer plate, when the ply-orientation angle is less than 19°.  At the middle point of 

right edge, the deflections of the 2-layer are smaller than those of the 10-layer, when the 

ply-orientation angle is less than 38°.  They vary, by relative amounts, after these two 

points. 

Figure 4.7 shows the dimensionless stresses ,2

2

xx qb
hΣ σ⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,2

2

yy qb
hΣ σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

and ⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= xyxy qb

hΣ σ2

2

 at the center of the plate by using ASM and ANSYS.  The 

maximum difference between ASM and ANSYS results is 1.578%, which happens at Σy 

on the 10-layer plate, when ply-orientation angle θ = 0°.  Because of ply effect, the 

stress Σx decreases when the ply-orientation angle increases.  On the other hand, the 

stress Σy increases when the ply-orientation angle increases.  Under prescribed loading 

and boundary conditions, both stresses Σx and Σy on 2-layer plate are always larger than 

those of 10-layer plate.  Unlike Σx and Σy, stress Σxy of 2-layer plate is greater than those 

of 10-layers plate, only between ply orientation angles ranging from 15 to 75 degrees 

(see Figure 4.7). 
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4.4.4 Example 4: Two beam supported antisymmetric angle-ply 6-layer square 

laminated plate, subjected to a patch load and a concentrated load P 

This example presents a more complicated case for an antisymmetric angle-ply 

6-layer square laminated plate with varied ply orientation angles (-15/-45/-75/75/45/15), 

subjected to a patch load and a concentrated load combination.  This plate has simply 

supported on y = 0 and y = b, one beam (K1 = 1.5) supported on the left edge, x = 0, and 

another beam (K1 = 10) supported inside the plate at x = 7a/8.  The patch load covers x 

from a/10 to a/2 and y from a/10 to a/2.  The concentrated load is located at point x = 

37a/40 and y = 3a/4. 

Figure 4.8 shows loading and support conditions for this example, and displays 

the contour of dimensionless deflection ⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= w

qb
hEw 4

3
2100ˆ  for patch load and 

w
Pb

hEw ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

3
2100ˆ  for concentrated load ⎥⎦

⎤  for a square laminated plate, generated using 

ASM.  This case is also analyzed using ANSYS.  The differences of dimensionless 

deflections ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

w
ww

)

))
100  on special points, such as middle point on left edge 

(0.214%), center of patch load (0.985%), middle point of inside beam (0.518%), the point 

concentrated load exerted on (4.065%), and the point of right edge, x = a and y = 3a/4 

(1.241%), are identified.  The maximum difference is 4.065%, which happens at the 

concentrated load point.  Others are less than 1.25%.  The differences of dimensionless 

stresses ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

Σ−Σ

ASM

ASMANSYS100  at the center of the patch load are 1.158%, 2.28%, and 

1.886% for Σx, Σy, and Σxy respectively.  All of these results indicate that ASM can be 

used in more complicated loading and boundary conditions. 

 

4.5 Summary and Conclusions 

ASM is extended to the analysis of stiffened continuous antisymmetric laminated 

composite plates in this chapter.  This method can be used to analyze stiffened 

continuous laminated composite plates, subjected to any combination of patch, uniform, 



www.manaraa.com

 

 
 53 

line, and concentrated loads.  The sufficiently converged deflection and stress results are 

observed for antisymmetric laminated plates with beam supports.  The results generated, 

using ASM, are compared with ones obtained using ANSYS.  All the differences 

between ASM and ANSYS results of dimensionless deflections and stresses listed in this 

chapter, from four different examples from basic to more complicated combination of 

loading and boundary conditions, are matched very well.  The proposed methodology 

enables researchers to analyze stiffened continuous antisymmetric composite laminated 

plates, with beam or point supports, subjected to any combination of patch, uniform, line, 

and concentrated loads, without resorting to approximate methods. 
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0.622 1.5 10 30
1 1.71286 1.38606 1.12445 1.08903
3 -0.03510 -0.03486 -0.03472 -0.03469
5 0.00351 0.00350 0.00350 0.00350
7 -0.00069 -0.00069 -0.00068 -0.00069
9 0.00020 0.00020 0.00020 0.00020

Sum5 1.68078 1.35421 1.09275 1.05735
1 1.07414 0.82507 0.59161 0.55645
3 -0.02152 -0.02115 -0.02091 -0.02089
5 0.00241 0.00240 0.00240 0.00241
7 -0.00050 -0.00049 -0.00049 -0.00050
9 0.00015 0.00014 0.00014 0.00015
Sum 1.05468 0.80597 0.57275 0.53762

3 m  = mode of deflection

5 Sum = 

4 K1  = dimensionless flexural rigidity of the beam

2  n  = number of layers

m 2

1

30º

2

10

Table 4.1. Convergence study for ASM on the center 
deflection, ŵ (a /2, a /2)1 of an antisymmetric angle-ply square 
plate (30º/-30º/30º/-30º/…) having three edges simply 
supported and the fourth edge (x = a ) with varied beam 
supported, a/h  = 1000, E 1  = 132.38 GPa, E 2  = 10.76 GPa, 
G 12  = G 13  = 5.65 GPa, G 23  = 3.61 GPa, ν 12  = 0.24 

K1 4
θº n 2

w
qa

hEaaw ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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⎠
⎞

⎜
⎝
⎛
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3
2100
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2
ˆ

∑
=
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3,1m
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Σ x Σ y Σ xy Σ x Σ y Σ xy Σ x Σ y Σ xy Σ x Σ y Σ xy

1 0.4528 0.2207 0.1863 0.4254 0.1951 0.1743 0.4007 0.1739 0.1635 0.3972 0.1710 0.1619
3 -0.0262 -0.0246 -0.0116 -0.0262 -0.0245 -0.0116 -0.0262 -0.0244 -0.0115 -0.0262 -0.0244 -0.0115
5 0.0059 0.0065 0.0028 0.0059 0.0065 0.0028 0.0059 0.0065 0.0028 0.0059 0.0065 0.0028
7 -0.0023 -0.0025 -0.0011 -0.0023 -0.0025 -0.0011 -0.0023 -0.0025 -0.0011 -0.0023 -0.0025 -0.0011
9 0.0011 0.0012 0.0005 0.0011 0.0012 0.0005 0.0011 0.0012 0.0005 0.0011 0.0012 0.0005

Sum4 0.4313 0.2012 0.1769 0.4040 0.1758 0.1649 0.3793 0.1546 0.1541 0.3758 0.1517 0.1526
1 0.3456 0.1633 0.1720 0.3154 0.1403 0.1556 0.2816 0.1172 0.1377 0.2762 0.1136 0.1348
3 -0.0256 -0.0185 -0.0137 -0.0254 -0.0182 -0.0136 -0.0252 -0.0181 -0.0135 -0.0252 -0.0181 -0.0135
5 0.0066 0.0053 0.0036 0.0066 0.0053 0.0036 0.0066 0.0053 0.0036 0.0066 0.0053 0.0036
7 -0.0025 -0.0021 -0.0014 -0.0025 -0.0021 -0.0014 -0.0025 -0.0021 -0.0014 -0.0025 -0.0021 -0.0014
9 0.0012 0.0010 0.0007 0.0012 0.0010 0.0007 0.0012 0.0010 0.0007 0.0012 0.0010 0.0007

Sum 0.3253 0.1490 0.1612 0.2953 0.1263 0.1449 0.2616 0.1033 0.1271 0.2562 0.0998 0.1242

2 m  = mode of deflection
3 K1 = dimensionless flexural rigidity of the beam
4 Sum = 

30º

2

10

1 n  = number of layers

Table 4.2. Convergence study for ASM on the center stresses Σ(a/2, a/2) =  (σh 2/qa 2) of an antisymmetric angle-
ply square plate (30º/-30º/30º/-30º/…) having three edges simply supported and the fourth edge (x = a ) with 
varied beam supported, a/h = 1000, E 1  = 132.38 GPa, E 2  = 10.76 GPa, G 12  = G 13  = 5.65 GPa, G 23  = 3.61 
GPa, ν 12  = 0.24

10 30
K1 3

m 2 1.50.622θº n 1

55

∑
=

11

3,1m
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θº n Method ŵ Left
5 ŵ Beam1

6 ŵ Center
7 ŵ Beam2

8 ŵ Right
9

ASM2 1.5526 0.9280 1.7092 0.6648 0.4768
2 ANSYS3 1.5475 0.9288 1.7160 0.6647 0.4711

Diff. (%)4 0.327 -0.085 -0.395 0.008 1.206
ASM 1.5526 0.9280 1.7092 0.6648 0.4768

10 ANSYS 1.5475 0.9288 1.7160 0.6647 0.4711
Diff. (%) 0.327 -0.085 -0.395 0.008 1.206

ASM 2.1361 0.8821 2.2322 0.6423 0.5459
2 ANSYS 2.1380 0.8827 2.2360 0.6430 0.5370

Diff. (%) -0.089 -0.062 -0.169 -0.107 1.664
ASM 1.6263 0.8743 1.5267 0.6380 0.5656
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2 ASM - Analytical Strip Methed

4 Diff. (%) = 

90

Middle Beam 2

1

3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)

Center

Table 4.4. Effect of ply angle (θº ) and number of layers (n ) on stress Σ 1  at center plate and 
middle beams of a uniformly loaded rectangular antisymmetric angle-ply plate (a/b  = 2, θº/-
θº/θº/…/-θº ) with two beams supported inside plate, b/h  = 1000, E 1 = 132.38 GPa, E 2 = 
10.76 GPa, G 12 = G 13 = 5.65 GPa, G 23 = 3.61 GPa, ν 12 = 0.24                       

0

45

60

Middle Beam 1

30

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

Σ
ΣΣ100

σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

qa
hΣ 2

2

 57



www.manaraa.com

58 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x

y

0

b

x1 xi+1xixi-2 xi-1 xn-1 xn

1 2 I-2

I-1 I+1

I+2

I

N-1 N

2 J+1J-1 J S-1 S1

x

y

0

b

x1 xi+1xixi-2 xi-1 xn-1 xn

1 2 I-2

I-1 I+1

I+2

I

N-1 N

2 J+1J-1 J S-1 S1
 

Figure 4.1. Stiffened plate with strip and edge loadings (beams are concentric and 
only half beams on bottom are shown for clarity) 
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the center of plate of a uniformly loaded antisymmetric angle-ply rectangular 
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Figure 4.8. Contour of dimensionless deflection for an antisymmetric angle-ply 6-
layer (-15/-45/-75/75/45/15) square laminated plate with simply supported on y = 0 
and y = a, one beam at x = 0, and another beam at x = 7a/8 having a patch load and 
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CHAPTER 5 

FREE VIBRATION OF STIFFENED 

ANTISYMMETRIC LAMINATED PLATES  
 

5.1 Introduction 

 Stiffened laminated composite plates are being increasingly used in the 

aeronautical and aerospace industry, as well as in other fields of modern technology.  

They are structural components, consisting of plates reinforced by a system of ribs or 

beams to enhance their load-carrying capacity, and they are preferred in situations where 

the structures are subject to severe dynamic loads.  The stiffened laminated plates are 

taking the place of many metallic components in aircrafts, such as in wings, fuselages, 

and floors. 

 A number of papers, pertaining to the free vibration of stiffened laminated plate, 

have been published.  Mukherjee and Mukhopadhyay (1986) and Mukhopadhyay and 

Mukherjee (1989) have surveyed different approaches to vibration analysis of 

conventional stiffened plate problems.  Many of these approaches can be utilized with 

the finite element method (FEM).  Zhao et al. (2002), using an energy approach, 

investigated the free vibration of the stiffened simply supported rotating cross-ply 

laminated cylindrical shells.  Sadek and Tawfik (2000) presented a higher-order finite 

element model, and studied the behavior of concentrically and eccentrically stiffened 

laminated plates.  Rikards et al. (2001) developed a triangular finite element model, and 

studied the free vibrations of stiffened laminated composite shells.  Guo et al. (2002) 

developed a layerwise finite element formulation, and made a free vibration analysis of 

stiffened laminated plates.  Qing et al. (2006) analyzed a novel mathematical model, 

based on the state-vector equation theory, for the free vibration analysis of stiffened 

laminated plates. 

 In this chapter, ASM is developed for the free vibration analysis of antisymmetric 

cross-ply and angle-ply stiffened laminated composite plate (Figure 5.1) with 

bending-extension coupling.   

 

5.2 Free Vibration Analysis 

For an antisymmetric cross-ply or angle-ply plate in harmonic vibration, the 
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governing differential Equation 2.13 can be written as (Reddy, 2004): 
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L is total layers of laminated plate; kρ is material density of the kth layer.  For an 
antisymmetric cross-ply plate, w can be written as: 
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Equation 5.1 can be written as: 
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If Equation 5.5 keeps always true, the following must be valid: 
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5.3 Method of Solution 

Using a procedure similar to that used in 3.3 for strip I, the characteristic equation 

of Equation 5.6 is: 
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Since ,0≠=
b
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πβ  for m = 1, 2, …∞ , Equation 5.7 leads to: 
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The corresponding coefficients ,*
1A ,*

3A ,*
5A ,*

7A and *
9A , for an antisymmetric 

angle-ply plate, are obtained by replacing a7, a8, and a9 by b7, b8, and b9, respectively 

(Equation 2.30). 

Similar to 3.3.1, Equation 5.8 can be reduced to a quartic equation, leading to the 

following general expression for Ith strip solution, )(xmIφ : 

)sin()]sinh()cosh([          
)cos()]sinh()cosh([          

)sin()]sinh()cosh([          
)cos()]sinh()cosh([)(

43837

43635

21413

21211

xxCxC
xxCxC

xxCxC
xxCxCx

mImImImImImImImI

mImImImImImImImI

mImImImImImImImI

mImImImImImImImImI

βγβγβγ
βγβγβγ
βγβγβγ
βγβγβγφ

++
++
++
+=

   (5.10) 

For a rectangular plate with N-plate strips (Figure 5.1), which depends on the number of 

beams and material/geometric discontinuities, all the boundary and continuity conditions 
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in (3.39) through (3.43) and (4.5) through (4.7) can be expressed in terms of constants 

CdmI (d = 1, 2, …, 8; I = 1, 2, …, N), and the roots of Equation 5.8.  The constants CdmI 

(d = 1, 2, …, 8; I = 1, 2, …, N) are determined for each mode of plate m (m = 1, 2, …, ∞). 

       The coefficients of Equation 5.8 contain two unknowns,ω  and m.  m is fixed a 

priori, and it can be identified with the number of half-waves along y-direction 

deformation; it takes integer values, depending on the mode of deformation.  

Substitution of the solution )(xmφ , given by Equation 5.10 in a set of eight boundary, 

and continuity conditions, leads to a set of 8N algebraic equations.  The determinant of 

the coefficients CdmI (d = 1, 2, …, 8; I = 1, 2, …, N), set to zero, leads to a transcendental 

equation for ω  and m.  For a given integer value of m, the value of ω , which makes 

the determinant zero, obtained by a method of hit and trial involving a bisection search 

strategy.  The minimum value of ω , which satisfies this condition, is the lowest natural 

frequency (fundamental frequency).  The MATLAB programs are then written to obtain 

fundamental frequencies ω  for antisymmetric angle-ply and cross-ply plates with 

various aspect ratios, ply orientation angle and different number of layers. 

 

5.4 Application 

For illustrative purpose, the numerical applications address verifications of 

beam/stiffener boundary condition and supports inside the plate.  All the layers are 

assumed to be of the same thickness and density, and made of the same orthotropic 

material.  The plates with 2 layers and 10 layers are analyzed in all examples.   

When comparing the results of the ASM solution with ones obtained from the 

finite element program ANSYS (ANSYS, Inc., 2007), an eight-node quadrilateral 

linear-layered structural shell element (Shell99) is used to model the laminated plates.   

 

5.4.1 Example 1: Effects of aspect ratio (a/b), beam rigidity (K1) and number of layers 

(n) on the dimensionless fundamental frequency
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ωρω

2

2

Eh
b  

Antisymmetric cross-ply rectangular laminated plates (0º/90º/0º/90º/..., a/b = 0.5, 

1, 2, 3, 5), having a width in the y-direction to plate thickness ratio b/h = 1000, simply 
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supported on y = 0 and y = b, beam supported at x = 0 and x = a, are used in this 

example.  The material properties are: =
2

1

E
E  20, ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 

0.25. 

Table 5.1 illustrates effects of aspect ratio (a/b), beam rigidity (K1), and number 

of layers (n) on fundamental frequency, ,ω of a rectangular cross-ply plate (0º/90º/0º/90º 

/...).  For given beam rigidity (K1) and plate layer (n), ω  decreases as aspect ratio (a/b) 

increases.  This is true when a/b increases, and when plate stiffness decreases so does 

the .ω   For given aspect ratio (a/b) and plate layer (n), ω  increases as beam rigidity 

(K1) increases.  The stronger beam rigidity (K1) reinforces plate stiffness.  As a result, 

ω  increases as well.  For given beam rigidity (K1) and aspect ratio (a/b), ω  with 10 

layers is always greater than ω  with 2 layers. 

The bending-extension coupling effect from 2-layer laminated plate is greater 

than the bending-extension coupling effect of 10-layer laminated plate.  The stronger 

bending-extension coupling effect lowers ω .  The beam rigidity (K1) shows a greater 

effect when a/b is smaller.  We can see greater differences from ω  among different 

beam rigidities when a/b equals 0.5.  On the other hand, at the greatest value of a/b, a/b 

= 5, for example, ω  is approximately same when beam rigidity (K1) changes from 0.6 

to 80.  This means when a/b gets equal to or greater than a certain value, the effect of 

the boundary beams vanishes. 

     The difference between results obtained by ASM and by ANSYS decreases as a/b 

increases.  When a/b equals 1, these differences are less than 1.41%, and when a/b 

equals 5, they are less than 0.14%.  The results obtained by ASM and by ANSYS are 

identical when a/b = 5, n = 10, and K1 ≥ 10.  However, when a/b = 0.5 and K1 ≤ 10, 

the results obtained by ASM and by ANSYS are not very well matched.  The maximum 

difference between them ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

ϖ
ϖϖ100  reaches -3.61%, which happens at a/b = 

0.5, K1 = 0.6, and n = 2, because boundary restriction on beam rotary and warping 

becomes a strong side effect on laminated plate in the ANSYS model.  As the beam 

stiffness increases or a/b ratio increases, this side effect of boundary restriction is 
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dominated by the beam or is ignored by bigger plate size a.  That is why the differences 

are diminished to smaller than 0.80% when a/b = 0.5 and K1 ≥ 40, or to smaller than 

0.12% when a/b = 5. 

 

5.4.2 Example 2: Effects of orthotropicity ratio (E1/E2), beam rigidity (K1) and number 

of layers (n) on the dimensionless fundamental frequency
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ωρω

2

2

Eh
a  

An antisymmetric angle-ply square plate (45º/-45º/45º/-45º..., a/b = 1), having a 

width in the x-direction to plate thickness ratio a/h = 1000, simply supported on y = 0 

and y = b, beam supported at x = 0 and x = a is used in this example.  The material 

properties are: =
2

1

E
E  3, 10, 20, 30, and 40, ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 0.25. 

Table 5.2 illustrates the effects of orthotropicity ratio (E1/E2), beam rigidity (K1), 

and number of layers (n) on fundamental frequency, ,ω of a square angle-ply plate 

(45º/-45º/45º/-45º...).  For given beam rigidity (K1) and plate layer (n), ω  increases as 

orthotropicity ratio (E1/E2) increases.  This is true when E1/E2 increases, and when plate 

stiffness increases, so does the .ω   For given orthotropicity ratio (E1/E2) and plate layer 

(n), ω  increases as beam rigidity (K1) increases.  The stronger beam rigidity (K1) 

reinforces plate stiffness.  As a result, ω  increases as well.  For given beam rigidity 

(K1) and orthotropicity ratio (E1/E2), ω  with 10 layers is always greater thanω with 2 

layers. 

The bending-extension coupling effect, of 2-layer laminated plate is greater than 

the bending-extension coupling effect of 10-layer laminated plate.  The stronger 

bending-extension coupling effect lowers ω .  This effect becomes more evident when 

the orthotropicity ratio (E1/E2) increases.  When E1/E2 equals 3, there are only small 

differences, i.e. from 2.96% to 8.73% when K1 varies from 1 to 80, between ω  with 

10-layer and with 2-layer plates.  On the other hand, when E1/E2 equals 40, there are 

larger differences, i.e. from 37.58% to 69.97% when K1 varies from 1 to 80, between ω  

with 10-layers and with 2-layer plates.  It shows stronger bending-extension coupling 

effect when orthotropicity ratio (E1/E2) increases. 
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The difference ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

ϖ
ϖϖ100  between results obtained by ASM and by 

ANSYS decreases as E1/E2 or K1 increases.  The greatest difference, i.e. 4.78% occurs 

at E1/E2 = 3, K1 = 1, and n = 2.  This is due to a situation similar to that in 5.4.1, in 

which boundary restriction on beam rotary and warping is a strong side effect on 

laminated plate in ANSYS model, when E1/E2 decreases.  As E1/E2 increases, this 

boundary restriction side effect is dominated by plies in the plate.  That is why the 

differences are reduced to less than 1.63%, when E1/E2 = 40.   

 

5.4.3 Example 3: Effects of ply angle (θ) and number of layers (n) on the dimensionless 

fundamental frequency
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ωρω

2

2

Eh
b   

An antisymmetric angle-ply rectangular plate (θ/-θ/θ/-θ/..., a/b = 2), having a 

width in the y-direction to plate thickness ratio b/h = 1000, simply supported on y = 0 

and y = b, three beams with K1 = 1 supported at x = 0, x = a/2 and x = a, is used in this 

example.  The material properties are: =
2

1

E
E  20, ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 

0.25. 

Table 5.3 illustrates effects of ply angle (θ) and number of layers (n) on ω  of a 

rectangular angle-ply plate (θ/-θ/θ/-θ/...).  ω  varies as ply angle changes.  For 2-layer 

laminated plate, the minimum value of ω  occurs at ply-orientation angle θ = 50°; 

whereas for 10-layer laminated plate, the maximum value of ω  happens at 

ply-orientation angle θ = 65°.  For given ply angle, ω  in 10-layer plate is greater than 

that in 2-layer plate.  Most of the differences ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

ϖ
ϖϖ100  between results 

obtained by ASM and by ANSYS are less than 1%.  Only at one point is the difference 

greater than 3%, which reaches -3.21%, and this occurs when θ = 75° and n = 2. 
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5.4.4 Example 4: Maximizing fundamental frequency 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ωρω

2

2

Eh
b  by varying 

inside beam position for cross-ply (0/90/0/90/...) and angle-ply (θ/-θ/θ/-θ/...) 

laminated plates, with varied boundary conditions 

Antisymmetric cross-ply (a/b = 1 and a/b = 2.5) and antisymmetric angle-ply 

(a/b = 2.5) laminated plates having a width in the y-direction to plate thickness ratio b/h 

= 1000, simply supported at y = 0 and y = b, and varied boundary conditions at x = 0 and 

x = a are used in this example.  The material properties are: =
2

1

E
E  40 (for cross-ply) 

and =
2

1

E
E  20 (for angle-ply), ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 0.25. 

Figure 5.2 shows boundary condition and beam layout, and displays searching 

results by varying inside beam position for a cross-ply square plate in maximizing 

procedure.  Inside beam position has an effect on ω  of a plate.  Opposite to what was 

expected, these positions are different for laminated plates that have different layers.  

maxω  for 2-layer plate is 22.909, and occurs at xb/b = 0.55; whereas maxω  for 10-layer 

plate is 26.470 and occurs at xb/b = 0.58.  It is reasonable that the position of the inside 

beam is not at a/2, because the beam on the left boundary is much stronger, K1 = 2.0, 

than the beam on the right boundary, K1 = 0.6. 

Further maximizing results for ω  for a cross-ply rectangular plate (a/b = 2.5), 

with different boundary conditions at x = 0 and x = a, are shown in Table 5.4.  For a 

same layer plate, with the weakest boundary condition, i.e. free boundary condition, the 

maximized ω  has the least values, 10.096 and 15.277, for 2-layer and 10-layer plates 

respectively.  The positions of the inside beams are closest to boundaries, xb/b = 0.57 

and xb/b = 0.55 for 2-layer and 10-layer plates respectively. 

When boundary conditions at both sides x = 0 and x = a get stronger, from K1 = 

0.6 to clamped condition, the maximized ω  increases.  Under clamped condition, the 

maximized ω  are 16.787 and 21.557 for 2-layer and 10-layer plates respectively.  At 

this time, the positions of the inside beams are the farthest away from plate boundaries.  

They are xb/b = 0.90 and xb/b = 0.97, for 2-layer and 10-layer plates respectively.  
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Similar to the results in Figure 5.2, the inside beam positions, where ω  are maximized, 

are different for 2-layer and 10-layer plates under the same boundary condition. 

More interesting results are illustrated in Table 5.5, for angle-ply rectangular plate 

(a/b = 2.5), with beam supported boundary conditions at x = 0 and x = a.  For any given 

layer, maxω  is not only inside-beam position dependent, but it is also ply-angle 

dependent.  The larger the ply angle, the smaller xb/b.  maxω  are, 15.263, which 

happens at θ = 90 and when xb/b = 0.85 in a 2-layer plate, and 15.337, which happens at 

θ = 80 and xb/b = 0.85 in a 10-layer plate.  These maximized values have only a 0.48% 

difference. 

For the same ply-angles, the biggest difference between ω  for 2-layer and 

10-layer plates is 24.09%.  At this point, ω  is 12.030 under xb/b = 0.87, for 2-layer 

plate, and 14.928 under xb/b = 0.88, for 10-layer plate; this happens at θ = 65.  At two 

end points, where θ = 0° or θ = 90°, there are not differences between ω  in 2- and 

10-layer laminated plates, since the bending-extension coupling effect is 0.  

 

5.5 Summary and Conclusions 

ASM is extended to the analysis of free vibration for antisymmetric laminated 

composite plates in this chapter.  The results obtained using ASM are compared with 

ones obtained by using ANSYS (ANSYS, Inc., 2007).  Most of the results are match 

well, with less than 1% difference (5.4.1 through 5.4.3).  Because boundary restriction 

on beam rotary and warping has a strong side effect on laminated plate in the ANSYS 

model, when beam rigidity is small (e.g. K1 = 0.6 or 1), plate-dimension ratio is small 

(e.g. a/b = 0.5), or orthotropicity ratio is small (e.g. E1/E2 = 3), the results obtained by 

these two approaches are not well matched.  The difference between them reaches 

-3.61%, which occurs at a/b = 0.5, K1 = 0.6, and n = 2; and 4.78%, which occurs at 

E1/E2 = 3, K1 = 1, and n = 2. 

As the beam rigidity increases, or as the orthotropicity ratio increases, ω  also 

increases.  On the other hand, as aspect ratio increases, ω  declines.  It is shown that 

the effect of coupling between bending and extension upon ω  is noticeable.  For given 

beam rigidity, aspect ratio of the plate, orthotropicity ratio of the plate, and ply angle (for 
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angle-ply plate), ω  of 10-layer plate is always greater thanω  of 2-layer plate, except 

at the points θ = 0° or θ = 90° where there is no bending-extension coupling effect at all 

(Bij = 0 at θ = 0° and 90°).   

The proposed method, ASM, can be easily used to maximize ω  for 

antisymmetric stiffened laminated composite plates.  For given laminated plate and 

stiffener, maxω , depends on the stiffener’s position and ply angle (for angle-ply plate).  

The inside stiffener positions, where ω  is maximized, are different for 2-layer and 

10-layer laminated plates under the same boundary conditions.  For a designer, this may 

indicate that it is necessary to analyze every laminated plate, when maxω  is pursued for 

different layer plate. 
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n  = 2 n = 10 n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10
ASM2 19.411 20.821 11.134 14.041 6.801 10.142 6.107 9.461 5.847 9.216

ANSYS3 18.710 20.330 11.140 14.110 6.871 10.200 6.138 9.476 5.853 9.218
Diff. (%)4 -3.61 -2.36 0.06 0.49 1.02 0.58 0.50 0.16 0.11 0.02

ASM 23.597 25.369 12.139 15.612 6.887 10.319 6.124 9.497 5.849 9.221
ANSYS 22.880 24.700 12.260 15.750 6.967 10.380 6.157 9.510 5.856 9.222
Diff. (%) -3.04 -2.64 0.99 0.88 1.17 0.59 0.53 0.14 0.12 0.01

ASM 30.344 33.484 13.294 17.893 6.969 10.520 6.140 9.534 5.851 9.226
ANSYS 29.630 32.460 13.480 18.110 7.054 10.570 6.174 9.544 5.858 9.226
Diff. (%) -2.35 -3.06 1.40 1.21 1.22 0.47 0.56 0.10 0.12 0.01

ASM 45.276 58.884 14.678 21.697 7.052 10.760 6.155 9.574 5.853 9.230
ANSYS 45.050 57.220 14.860 21.830 7.134 10.780 6.189 9.577 5.860 9.230
Diff. (%) -0.50 -2.83 1.24 0.61 1.16 0.18 0.56 0.03 0.12 0.00

ASM 51.084 75.507 15.007 22.837 7.070 10.817 6.158 9.583 5.854 9.231
ANSYS 51.170 74.910 15.170 22.880 7.151 10.820 6.192 9.584 5.860 9.231
Diff. (%) 0.17 -0.79 1.09 0.19 1.15 0.03 0.56 0.01 0.11 0.00

ASM 52.215 79.531 15.064 23.047 7.073 10.827 6.158 9.585 5.854 9.231
ANSYS 52.330 79.300 15.220 23.070 7.154 10.830 6.192 9.585 5.861 9.231
Diff. (%) 0.22 -0.29 1.04 0.10 1.15 0.03 0.55 0.00 0.13 0.00

4 Diff. (%) = 

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)

Table 5.1. Effects of aspect ratio (a/b ), beam rigidity (K1 ) and number of layers (n ) on the 
dimensionless fundamental frequency (ϖ 1) of a rectangular cross-ply laminated plate 
(0°/90°/0°/90°/..., b/h  = 1000, E 1/E 2=20, G 12 = G 13 = 0.6E 2,  G 23 = 0.5E 2,  ν 12 = 0.25)

a/b

40

80

0.6

1

2

10

5MethodK1 0.5 1 2 3
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n  = 2 n = 10 n = 2 n = 10 n = 2 n = 10 n = 2 n  = 10 n  = 2 n = 10
ASM 6.883 7.087 9.994 11.635 12.473 15.882 14.337 19.143 15.908 21.885

ANSYS 6.554 6.829 9.721 11.410 12.380 15.760 14.420 19.140 16.160 22.000
Diff. (%) -4.78 -3.64 -2.73 -1.93 -0.75 -0.77 0.58 -0.01 1.58 0.52

ASM 9.335 9.932 12.208 15.766 14.714 21.306 16.731 25.552 18.487 29.098
ANSYS 9.057 9.633 12.110 15.600 14.720 21.310 16.820 25.780 18.650 29.570
Diff. (%) -2.98 -3.01 -0.80 -1.05 0.04 0.02 0.53 0.89 0.88 1.62

ASM 9.912 10.659 12.615 16.718 15.111 22.589 17.159 27.134 18.957 30.953
ANSYS 9.734 10.459 12.560 16.610 15.110 22.600 17.200 27.290 19.040 31.270
Diff. (%) -1.80 -1.88 -0.44 -0.65 -0.01 0.05 0.24 0.57 0.44 1.02

ASM 10.236 11.075 12.833 17.254 15.323 23.323 17.388 28.058 19.210 32.061
ANSYS 10.133 10.960 12.800 17.190 15.320 23.320 17.400 28.130 19.240 32.220
Diff. (%) -1.01 -1.04 -0.26 -0.37 -0.02 -0.01 0.07 0.26 0.16 0.50

ASM 10.350 11.222 12.908 17.442 15.396 23.583 17.466 28.389 19.297 32.462
ANSYS 10.275 11.141 12.880 17.390 15.390 23.570 17.470 28.420 19.310 32.550
Diff. (%) -0.72 -0.72 -0.22 -0.30 -0.04 -0.05 0.02 0.11 0.07 0.27

ASM 10.407 11.297 12.946 17.537 15.432 23.715 17.506 28.559 19.341 32.669
ANSYS 10.348 11.234 12.920 17.500 15.420 23.700 17.500 28.570 19.350 32.720
Diff. (%) -0.57 -0.56 -0.20 -0.21 -0.08 -0.06 -0.04 0.04 0.05 0.16

ASM 10.495 11.411 13.003 17.683 15.488 23.918 17.566 28.819 19.408 32.988
ANSYS 10.459 11.376 12.980 17.650 15.470 23.890 17.560 28.800 19.400 32.980
Diff. (%) -0.34 -0.31 -0.18 -0.19 -0.12 -0.12 -0.04 -0.07 -0.04 -0.02

1

E 1 /E 2

3 10 20 30 40

40

80

Table 5.2. Effects of in-plane orthotropicity ratio (E 1/E 2), beam rigidity (K1 ) and number of 
layers (n ) on the dimensionless fundamental frequency (ϖ 1) of a square angle-ply laminated 
plate (45º/-45º/45º/-45º..., b/h  = 1000, G 12 = G 13 = 0.6E 2,  G 23 = 0.5E 2,  ν 12 = 0.25)

5

10

20

30

K1 Method

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)
4 Diff. (%) = ⎟⎟
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ASM2 ANSYS3 Diff.(%)4 ASM ANSYS Diff.(%)
0 12.908 12.897 -0.08 12.908 12.903 -0.04
5 12.811 12.790 -0.16 12.927 12.918 -0.07
10 12.581 12.541 -0.32 12.990 12.969 -0.16
15 12.324 12.280 -0.36 13.096 13.060 -0.28
20 12.108 12.067 -0.34 13.243 13.188 -0.41
25 11.946 11.910 -0.30 13.427 13.353 -0.55
30 11.834 11.799 -0.29 13.647 13.554 -0.68
35 11.758 11.722 -0.31 13.901 13.791 -0.79
40 11.709 11.666 -0.37 14.181 14.060 -0.85
45 11.679 11.623 -0.48 14.477 14.348 -0.89
50 11.667 11.585 -0.71 14.768 14.638 -0.88
55 11.674 11.547 -1.09 15.030 14.904 -0.84
60 11.705 11.521 -1.58 15.229 15.115 -0.75
65 11.795 11.542 -2.15 15.335 15.238 -0.64
70 12.018 11.686 -2.76 15.328 15.251 -0.50
75 12.480 12.080 -3.21 15.206 15.150 -0.37
80 13.267 12.875 -2.96 15.012 14.975 -0.25
85 14.249 14.047 -1.42 14.835 14.816 -0.13
90 14.765 14.723 -0.29 14.765 14.760 -0.04

Angle 
(θ )

2 Layers 10 Layers

Table 5.3. Effects of ply angle (θ ) and number of layers (n ) on the 
dimensionless fundamental frequency (ϖ 1) of a rectangular angle-ply 
laminated plate (a/b  = 2, b/h  = 1000, E 1/E 2=20, G 12 = G 13 = 0.6E 2,  G 23 

= 0.5E 2,  ν 12 = 0.25) with beams at x  = 0, x = a /2 and x = a respectively, 
K1  = 1 for all 3 beams

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)
4 Diff. (%) = ⎟⎟
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79 

 
Table 5.4.  Effect of boundary condition and positions of two inside beams on 
maximized dimensionless fundamental frequency for a rectangular cross-ply 
laminated plate (0º/90º/0º/90º/..., b/h = 1000, E1/E2=40, G12 = G13 = 0.6E2, G23 = 
0.5E2,  ν12 = 0.25) 

2 Layers 10 Layers 
Boundary Condition 2

maxϖ  xb/b maxϖ  xb/b 

 

10.096 0.57 15.277 0.55 

  

15.607 0.85 19.704 0.87 

  

16.082 0.87 20.288 0.90 

  

16.787 0.90 21.557 0.97 
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ϖ max x b /b ϖ max x b /b
0 11.536 0.90 11.536 0.90
5 11.502 0.90 11.552 0.90
10 11.425 0.89 11.604 0.90
15 11.345 0.89 11.694 0.90
20 11.288 0.88 11.826 0.90
25 11.260 0.88 12.006 0.90
30 11.261 0.88 12.242 0.90
35 11.290 0.87 12.538 0.90
40 11.346 0.87 12.892 0.90
45 11.425 0.87 13.296 0.90
50 11.527 0.87 13.731 0.89
55 11.656 0.87 14.171 0.89
60 11.817 0.87 14.581 0.89
65 12.030 0.87 14.928 0.88
70 12.345 0.87 15.179 0.87
75 12.861 0.87 15.312 0.86
80 13.682 0.87 15.337 0.85
85 14.721 0.85 15.309 0.85
90 15.289 0.85 15.289 0.85

2

Table 5.5.  Effect of ply angle and positions of two inside beams on maximized 
dimensionless fundamental frequency for a rectangular angle-ply laminated plate (θ/-
θ/θ/-θ/ ..., b/h  = 1000, E 1 /E 2 =20, G 12  = G 13  = 0.6E 2 , G 2 3 = 0.5E 2 ,  ν 12  = 0.25) 
with two boundary beams at x = 0 and x = a
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Figure 5.1. Stiffened plate with stiffeners parallel to y-axis  
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Figure 5.2.  Maximizing dimensionless fundamental frequency by varying inside 
beam position for a square cross-ply laminated plate (0°/90°/0°/90°/..., b/h = 1000) 
with two boundary beams at x = 0 and x = a 
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CHAPTER 6 

BUCKLING OF STIFFENED 

ANTISYMMETRIC LAMINATED PLATES  
 
6.1 Introduction 

 The study of buckling of stiffened laminated plates has a long history.  In the 

early stages, a stiffened plate was idealized as an orthotropic plate.  In fact, the study of 

orthotropic plates was stimulated by the need to establish a simplified model for the 

analysis of stiffened isotropic plates a half century ago (Troitsky, 1976).  The earliest 

published work found was presented by Bryan in 1891. 

 Based on the classical plate theory, Timoshenko and Gere (1961) presented 

numerical tables for buckling coefficients of rectangular plates, stiffened by longitudinal 

and lateral stiffeners.  Experimental investigations have been carried out on 

graphite/epoxy laminated stiffened plates (Williams and Stein, 1976; Starnes et al., 1985. 

 Habib and Nahas (1997) have investigated, experimentally and analytically, the 

buckling of glass/polyster composite stiffened panels, with Z-shape/Angle stiffeners, 

under uniaxial compression.  The finite strip method has been applied for the stability 

analysis of composite blade stiffened panels under in-plane loads (Cheung, 1976; 

Loughland and Delaunoy, 1993).  Guo et al. (2002) developed a layerwise finite 

element formulation, and made a buckling analysis of stiffened laminated plates.   

 In this chapter, ASM is applied to the buckling analysis of antisymmetric 

cross-ply and angle-ply stiffened laminated composite plate (Figure 6.1), with 

bending-extension coupling.   

 

6.2 Buckling Analysis 

For an antisymmetric cross-ply or angle-ply plate subjected to in-plane loads Nx 

and/or Ny (Figure 6.1) per unit width, the governing Equation 2.13 can be written as 

(Reddy, 2004): 
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For an antisymmetric cross-ply plate, w can be written as:  
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Equation 6.1 can be written as: 
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6.3 Method of Solution 

Using a similar procedure as used in 5.3, for strip I, the characteristic equation of 

Equation 6.2 is: 
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Since ,0≠=
b

m
m

πβ  m = 1, 2, …,∞ , Equation 6.3 leads to: 
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The corresponding coefficients ,*
1A ,*

3A ,*
5A ,*

7A and *
9A , for an antisymmetric 



www.manaraa.com

 
 

 85 

angle-ply plate, are obtained by replacing a7, a8, and a9 with b7, b8, and b9 respectively 

(Equation 2.30). 

Similarly to 5.3, Equation 6.4 can be reduced to a quartic equation and leads to 

the following general expression for strip I solution, )(xmIφ  

)sin()]sinh()cosh([          
)cos()]sinh()cosh([          

)sin()]sinh()cosh([          
)cos()]sinh()cosh([)(

43837

43635

21413
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mImImImImImImImI
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βγβγβγ
βγβγβγφ

++
++
++
+=

    (6.6) 

For a rectangular plate, with N-plate strips (Figure 6.1), which depends on the number of 

beams and material/geometric discontinuities, all the boundary and continuity conditions 

in (3.39) through (3.43) and (4.5) through (4.7) can be expressed in terms of constants 

CdmI (d = 1, 2, …, 8; I = 1, 2, …, N) and the roots of Equation 6.4.  The constants CdmI (d 

= 1, 2, …, 8; I = 1, 2, …, N) are determined for each mode of plate m (m = 1, 2, …, ∞).   

The coefficients of Equation 6.4 contain three unknowns, Nx, Ny, and m.  m is 

fixed a priori and it is identified with the number of half-waves along y-direction 

deformation; it takes integer value, depending on the mode of deformation.  If Nx = 0, it 

is uniaxial compression by Ny.  If Ny = 0, it is uniaxial compression by Nx.  For a 

biaxial compression, assume Ny = kNNx, kN is fixed a priori and can be any number.  

Substitution of solution )(xmφ , given by Equation 6.6 in a set of eight boundary, and 

continuity conditions, leads to a set of 8N algebraic equations. 

The determinant of the coefficients CdmI (d = 1, 2, …, 8; I = 1, 2, …, N), set to 

zero, leads to a transcendental equation in Nx/Ny and m.  The elements of this equation 

contain Nx/Ny and m as unknowns.  For a given integer value of m, the value of Nx/Ny 

which makes this determinant zero, is obtained by a method of hit and trial that involves 

a bisection search strategy.  The minimum value of Nx/Ny which satisfies this condition 

is the critical buckling load, ./
crcr yx NN   A MATLAB program is then written to obtain 

the critical value of Nx/Ny, for antisymmetric angle-ply and cross-ply plates, with various 

aspect ratios, ply-orientation angles and any number of layers. 
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6.4 Application 

For illustrative purpose the numerical applications address verifications of the 

beam/stiffener boundary condition and supports inside the plate.  All the layers are 

assumed to be of the same thickness and density, and they are made of the same 

orthotropic material.  The plates with 2 layers and 10 layers are analyzed for all 

examples. 

When comparing the results of the ASM solution, with those obtained from the 

finite element program ANSYS (ANSYS, Inc., 2007), an 8-node quadrilateral 

linear-layered structural shell element (Shell99) is used to model the laminated plates.   

 

6.4.1 Example 1: Effects of aspect ratio (a/b), beam rigidity (K1) and number of layers 

(n) on the dimensionless uniaxial buckling load ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= yy N

hE
bN 3
2

2

 and bi-axial 

buckling loads ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== xxy N

hE
bNN 3
2

2

  

An antisymmetric cross-ply rectangular plate (0º/90º/0º/90º..., a/b = 0.5, 1, 2, 3, 

5), having a width in the y-direction to plate thickness ratio b/h = 1000, simply supported 

on y = 0 and y = b, beam supported at x = 0 and x = a, is used for this study.  The 

material properties are: =
2

1

E
E  20, ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 0.25. 

Table 6.1 illustrates effects of aspect ratio (a/b), beam rigidity (K1), and number 

of layers (n) on dimensionless of a uniaxial buckling load ( yN ) of a rectangular cross-ply 

plate (0/90/0/90/...).  For given beam rigidity (K1) and plate layer (n), yN  decreases as 

aspect ratio (a/b) increases.  So, when a/b increases, plate stiffness decreases; yN  

decreases as well.  For given aspect ratio (a/b) and plate layer (n), yN  increases as 

beam rigidity, K1, increases.  The stronger K1 gets, the stiffer the plate becomes.  As a 

result, yN increases as well.  For given K1 and aspect ratio (a/b), yN  in 10-layer plate 

is always greater than yN  in 2-layer plate. 

The bending-extension coupling effect for 2-layer laminated plate is greater than 
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the bending-extension coupling effect for 10-layer laminated plate.  A stronger 

bending-extension coupling effect lowers yN .  K1 demonstrates greater effect when 

a/b is smaller.  We can see greater differences from yN  among different beam 

rigidities, when a/b equals 0.5.  On the other hand, at the greatest value of a/b, a/b = 5, 

for example, yN  maintains approximately the same value, when K1 changes from 0.6 to 

80.  That means when a/b is equal to or greater than a certain value, the effect of 

boundary beams vanishes. 

     The difference ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASMy

ASMyANSYSy

N
NN

,

,,100  between results obtained by ASM and by 

ANSYS decreases as a/b increases.  When a/b is equal to 0.5, this difference reaches 

5.11%; when a/b is equal to 5, they are smaller than or equal to 0.60%.  When a/b ≤ 1, 

the results obtained by ASM and by ANSYS are not very well matched.  The maximum 

difference between them reaches 5.11%, which happens when a/b = 0.5, K1 = 0.6, and n 

= 2, because boundary restriction on beam rotary and warping increases the side effect 

on laminated plate in the ANSYS model.  As the beam stiffness increases or a/b ratio 

increases, the side effect from boundary restriction is dominated by the beam, or it is 

ignored by the larger plate size a.  That is why the differences are reduced to less than 

3.0% when a/b = 0.5 and K1 ≥ 40, and to less than 0.61% when a/b = 5. 

 A similar situation exists for bi-axial buckling loads.  Table 6.2 lists bi-axial 

buckling loads when xN  is equal to yN .  Comparing Table 6.2 with Table 6.1, the 

loads under the bi-axial condition are always lesser than ones under a uniaxial condition. 

 From Tables 6.1 and 6.2, we can see marked differences between the uniaxial buckling 

load and bi-axial buckling load, when a/b is small, say a/b = 0.5 or 1.0.  On the other 

hand, difference is getting smaller when a/b increases (see Tables 6.1 and 6.2).  This 

means that short direction, y-axial for this case, controls bi-axial load when a/b gets 

bigger. 
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6.4.2 Example 2: Effects of orthotropicity ratio (E1/E2), beam rigidity (K1) and number 

of layers (n) on the dimensionless uniaxial buckling load ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= yy N

hE
bN 3
2

2

  

An antisymmetric angle-ply square plate (45º/-45º/45º/-45º..., a/b = 1), having a 

width in the x-direction to plate thickness ratio a/h = 1000, simply supported on y = 0 

and y = b, beam supported at x = 0 and x = a, is used for this study.  The material 

properties are: =
2

1

E
E  3, 10, 20, 30, and 40, ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 0.25. 

Table 6.3 illustrates effects of orthotropicity ratio (E1/E2), beam rigidity, K1, and 

number of layers, n, on yN  of a square angle-ply plate (45º/-45º/45º/-45º...).  For given 

K1 and n, yN  increases as orthotropicity ratio (E1/E2) increases.  This is true when 

E1/E2 increases, and when plate stiffness increases, so does the yN .  For given 

orthotropicity ratio, E1/E2, and plate layer (n), yN  increases as K1 increases.  The 

stronger K1 reinforces the plate and makes it stiffer.  As a result, yN increases as well.  

For given K1 and E1/E2, yN of 10-layer plate is always greater than yN of 2-layer plate. 

The bending-extension coupling effect for a 2-layer laminated plate is greater 

than the bending-extension coupling effect for 10-layer laminated plate.  The stronger 

bending-extension coupling effect lowers yN .  This effect becomes more evident when 

E1/E2 increases.  When E1/E2 equals 3, there are only small differences, i.e. from 6.00% 

to 18.89%, when K1 varies from 1 to 80, between dimensionless uniaxial buckling loads 

for plates with 10 layers and those with 2 layers.  On the other hand, when E1/E2 equals 

40, there are larger differences, i.e. from 89.27% to 193.08%, when K1 varies from 1 to 

80, between dimensionless buckling loads with 10 layers and with 2 layers.  This shows 

a stronger bending-extension coupling effect, when orthotropicity ratio (E1/E2) increases. 
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6.4.3 Example 3: Effects of ply angle (θ) and number of layers (n) on the dimensionless 

uniaxial buckling load ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= yy N

hE
bN 3
2

2

  

An antisymmetric angle-ply rectangular plate (θ/-θ/θ/-θ/..., a/b = 2), having a 

width in the y-direction to plate thickness ratio b/h = 1000, simply supported on y = 0 

and y = b, three beams with K1 = 1 supported at x = 0, x = a/2 and x = a, is used in this 

example.  The material properties are: =
2

1

E
E  20, ==

2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 

0.25. 

Table 6.4 illustrates the effects of ply angle, θ, and number of layers, n, on yN  

of a rectangular angle-ply plate (θ/-θ/θ/-θ/...).  yN  varies as the ply angle changes.  

For 2-layer laminated plate, the minimum value of yN  occurs at ply-orientation angle θ 

= 50°; whereas for 10-layer laminated plate, the maximum value of yN  occurs at 

ply-orientation angle θ = 65°.  For a given ply angle, yN for a 10-layer plate is greater 

than one for 2-layer plate, except at points where θ = 0° or θ = 90° when they are the 

same values. 

Because boundary restriction on beam rotary and warping has a strong side effect 

when the ply-orientation angle decreases in the ANSYS model, the maximum difference 

between results obtained by ASM and by ANSYS reaches 6.97%; this occurs at the 

ply-orientation angle θ = 0° for the 10-layer plate.  Conversely, the minimum difference 

between results obtained by ASM and by ANSYS reaches 0.01% when the 

ply-orientation angle θ = 75°, for a 10-layer plate.   

   

6.4.4 Maximizing dimensionless uniaxial buckling load ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= yy N

hE
bN 3
2

2

 by 

varying inside beam position for cross-ply (0/90/0/90/...) and angle-ply 

(θ/-θ/θ/-θ/...) laminated plates with varied boundary conditions 

Antisymmetric cross-ply (a/b = 1 and a/b = 2.5) and antisymmetric angle-ply 

(a/b = 2.5) laminated plates, having a width in the y-direction to plate thickness ratio b/h 
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= 1000, simply supported on y = 0 and y = b, with varied boundary conditions at x = 0 

and x = a, are used in this example.  The material properties are: =
2

1

E
E  20, 

==
2

13

2

12

E
G

E
G 0.6, =

2

23

E
G 0. 5, ν12 = 0.25. 

Figure 6.2 shows the boundary condition and beam layout, and it displays 

searching results by varying inside beam position for a cross-ply square plate in a 

maximizing procedure.  Inside beam position has an effect on yN  of a plate.  These 

positions are different when laminated plates have different layers.  The maximum 

dimensionless uniaxial buckling load, max,yN  for 2-layer plate is 29.382, and this occurs 

at xb/b = 0.56; whereas max,yN  for 10-layer plate is 37.806, and it occurs at xb/b = 0.60.  

It is reasonable that the position for the inside beam is not at a/2, since the beam on the 

left boundary is much stronger, K1 = 2.0, than beam on the right boundary, K1 = 0.6. 

Further maximizing results for yN  for a cross-ply rectangular plate (a/b = 2.5), 

with different boundary conditions at x = 0 and x = a, are shown in Table 6.5.  For the 

same layer plate, with the weakest boundary condition, i.e. free boundary condition the 

maximized yN  is the smallest, 7.270 and 13.848, for 2-layer and 10-layer plates 

respectively.  The positions of inside beams are closest to boundaries, xb/b = 0.58 and 

xb/b = 0.56, for 2-layer and 10-layer plates respectively. 

When boundary conditions at both sides x = 0 and x = a increase, from K1 = 0.6 

to the clamped condition, the maximized yN  increases.  Under the clamped condition, 

the maximized dimensionless uniaxial buckling loads are 15.951 and 24.120, for 2-layer 

and 10-layer plates respectively.  At this time, the positions of the inside beams are the 

farthest away from boundaries.  They are xb/b = 0.91 and xb/b = 0.97, for 2-layer and 

10-layer plates respectively.  Similar to the results in Figure 6.2, the inside-beam 

positions, where yN  is maximized, are different for 2-layer and 10-layer plates under 

the same boundary condition. 

More interesting results are illustrated in Table 6.6 for angle-ply rectangular plate 

(a/b = 2.5) with a beam supported boundary condition at x = 0 and x = a.  For any given 
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layer, max,yN  is not only inside beam position dependent, but also ply-angle dependent.  

The larger the ply angle, the smaller xb/b.  For the same ply angle, the biggest difference 

of dimensionless uniaxial buckling loads between 2-layer and 10-layer plates is 53.99% 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2,

2,10,100
y

yy

N
NN .  At this point, the dimensionless uniaxial buckling loads are 14.663 

under xb/b = 0.87 for 2-layer plate, and 22.580 under xb/b = 0.88 for 10-layer plate; this 

occurs at θ = 65°.  At two end points, where θ = 0° or θ = 90°, there are no differences 

between dimensionless uniaxial buckling loads with 10- and 2-layer laminated plates, 

since the bending-extension coupling effect is 0.  

 

6.5 Summary and Conclusions 

An analytical method, ASM, is extended to the buckling analysis for 

antisymmetric laminated composite plates in this chapter.  The results obtained using 

ASM are compared with ones obtained by using ANSYS (ANSYS, Inc., 2007).  The 

examples show that there is big difference between uniaxial and bi-axial ( yx NN = ) 

buckling loads, when the aspect ratio (a/b) is small, i.e. a/b = 0.5.  However, they are 

close to each other when the aspect ratio (a/b) is greater, i.e. a/b = 5.  This indicates that 

short direction, y-axial for this case, controls bi-axial load when a/b increases. 

As the beam rigidity increases, or as the orthotropicity ratio increases, yN  also 

rises.  On the other hand, as aspect ratio increases, yN  declines.  Due to 

bending-extension coupling effect, for a given beam rigidity, aspect ratio of the plate, 

orthotropicity ratio of the plate and ply angle (for angle-ply plate), yN  with 10 layers is 

always greater than one with 2 layers except at the points θ = 0° or θ = 90° where there 

are not bending-extension coupling effect.   

The proposed method, ASM, can be easily used to maximize yN  for 

antisymmetric stiffened laminated composite plates.  For given laminated plate and 

stiffener, the maximum yN  depends on the stiffener’s position and ply-orientation angle 

(for angle-ply plate).  The inside stiffener positions, where buckling load is maximized, 

are different for 2-layer and 10-layer laminated plates under prescribed conditions.  As 
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expected, and similar to situations of free vibration, the clamped boundary condition 

provides the strongest stiffening effect, and the free boundary condition has the weakest 

stiffening effect.  It is evident that the various solutions trend to be independent of the 

number of layers at extreme values of ply-orientation angles owing to the absence of 

coupling stiffness (Bij = 0 at θ = 0° and θ = 90° for antisymmetric laminated angle-ply 

plate).   
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n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10
ASM2 38.133 41.937 13.090 19.628 4.722 9.556 3.278 7.097 2.578 5.693

ANSYS3 40.080 43.840 13.680 20.570 4.767 9.508 3.283 7.070 2.593 5.708
Diff. (%)4 5.11 4.54 4.50 4.80 0.94 -0.51 0.16 -0.38 0.60 0.27

ASM 55.493 63.441 15.763 25.558 4.983 10.552 3.346 7.412 2.591 5.764
ANSYS 57.730 65.580 16.410 26.570 5.060 10.480 3.357 7.377 2.606 5.778
Diff. (%) 4.03 3.37 4.10 3.96 1.54 -0.68 0.34 -0.47 0.58 0.24

ASM 80.568 110.11 19.030 34.824 5.233 11.669 3.407 7.728 2.603 5.830
ANSYS 82.900 112.50 19.800 36.160 5.332 11.520 3.421 7.677 2.617 5.842
Diff. (%) 2.89 2.17 4.04 3.84 1.89 -1.28 0.40 -0.66 0.55 0.21

ASM 82.497 199.40 22.100 51.702 5.482 12.999 3.466 8.066 2.614 5.895
ANSYS 85.070 200.40 22.790 53.290 5.593 12.680 3.479 7.980 2.627 5.903
Diff. (%) 3.12 0.50 3.12 3.07 2.03 -2.45 0.38 -1.07 0.52 0.13

ASM 82.870 201.77 22.182 53.532 5.534 13.316 3.478 8.142 2.616 5.910
ANSYS 85.060 201.40 22.930 54.870 5.646 12.930 3.490 8.042 2.629 5.916
Diff. (%) 2.64 -0.18 3.37 2.50 2.02 -2.90 0.34 -1.23 0.51 0.11

ASM 82.932 202.17 22.196 53.622 5.543 13.372 3.480 8.155 2.616 5.912
ANSYS 85.150 201.70 22.940 54.760 5.656 12.970 3.492 8.052 2.630 5.918
Diff. (%) 2.67 -0.23 3.35 2.12 2.03 -3.00 0.34 -1.26 0.53 0.10

3K1 0.5 1 2

Table 6.1. Effects of aspect ratio (a/b ), beam rigidity (K1 ) and number of layers (n ) on the 
dimensionless uniaxial buckling load (       ) of a rectangular cross-ply laminated plate 
(0°/90°/0°/90°/..., b/h  = 1000, E 1/E 2=20, G 12 = G 13 = 0.6E 2,  G 23 = 0.5E 2,  ν 12 = 0.25

a/b

40

80

0.6

1

2

10

5Method

4 Diff. (%) = 

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)

1
yN

3
2

2

hE
bN

N y
y =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ASM

ASMANSYS

N
NN100
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n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10 n  = 2 n  = 10
ASM2 23.901 33.741 8.667 15.853 3.948 8.500 2.989 6.631 2.485 5.524

ANSYS3 24.800 35.310 8.957 16.600 4.084 8.668 3.022 6.687 2.507 5.573
Diff. (%)4 3.76 4.65 3.35 4.71 3.43 1.98 1.10 0.84 0.87 0.89

ASM 28.173 44.028 9.465 18.733 4.073 9.085 3.028 6.836 2.494 5.574
ANSYS 28.970 46.030 9.649 19.340 4.228 9.213 3.062 6.874 2.515 5.616
Diff. (%) 2.83 4.55 1.94 3.24 3.80 1.41 1.13 0.56 0.85 0.76

ASM 32.587 60.078 10.186 22.107 4.184 9.677 3.062 7.031 2.501 5.619
ANSYS 32.790 59.150 10.260 21.860 4.355 9.739 3.097 7.046 2.522 5.655
Diff. (%) 0.62 -1.54 0.72 -1.12 4.09 0.64 1.16 0.21 0.83 0.64

ASM 36.566 80.870 10.826 25.639 4.284 10.280 3.092 7.226 2.508 5.662
ANSYS 35.530 78.250 10.870 24.950 4.477 10.260 3.129 7.212 2.528 5.691
Diff. (%) -2.83 -3.24 0.40 -2.69 4.50 -0.19 1.19 -0.19 0.81 0.51

ASM 37.302 84.714 10.951 26.339 4.304 10.407 3.098 7.267 2.509 5.671
ANSYS 36.030 81.660 11.040 25.390 4.506 10.370 3.136 7.247 2.530 5.698
Diff. (%) -3.41 -3.60 0.82 -3.60 4.68 -0.36 1.21 -0.27 0.84 0.48

ASM 37.423 85.325 10.971 26.455 4.308 10.429 3.099 7.274 2.509 5.672
ANSYS 36.080 81.970 11.080 25.480 4.512 10.390 3.137 7.253 2.530 5.699
Diff. (%) -3.59 -3.93 0.99 -3.69 4.74 -0.37 1.21 -0.28 0.83 0.47

3K1 0.5 1 2

Table 6.2. Effects of aspect ratio (a/b ), beam rigidity (K1 ) and number of layers (n ) on the 
dimensionless bi-axial buckling loads (                   ) of a rectangular cross-ply laminated plate 
(0°/90°/0°/90°/..., b/h  = 1000, E 1 /E 2 =20, G 12  = G 13  = 0.6E 2 ,  G23 = 0.5E 2 , ν 12  = 0.25

a/b

40

80

0.6

1

2

10

5Method

4 Diff. (%) = 

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)
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N y
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n = 2 n = 10 n = 2 n = 10 n = 2 n = 10 n = 2 n = 10 n = 2 n = 10
ASM2 4.801 5.089 10.120 13.716 15.763 25.558 20.827 37.128 25.640 48.529

ANSYS3 4.667 5.062 10.560 14.040 16.410 26.570 21.470 38.720 26.570 50.670
Diff. (%)4 -2.78 -0.52 4.34 2.36 4.10 3.96 3.09 4.29 3.63 4.41

ASM 8.829 9.996 15.099 25.185 21.937 45.993 28.346 66.155 34.629 85.787
ANSYS 9.165 10.470 15.670 26.110 22.650 47.480 29.420 68.800 35.300 89.300
Diff. (%) 3.80 4.74 3.78 3.67 3.25 3.23 3.79 4.00 1.94 4.09

ASM 9.956 11.512 15.536 28.320 22.100 51.702 29.832 74.601 34.802 97.076
ANSYS 10.410 12.050 16.100 29.290 22.790 53.290 29.470 78.920 35.290 101.60
Diff. (%) 4.56 4.68 3.63 3.43 3.12 3.07 -1.21 5.79 1.40 4.66

ASM 10.132 12.033 15.581 29.070 22.155 53.353 28.544 77.614 34.882 101.86
ANSYS 10.600 12.510 16.130 29.950 22.860 54.720 29.360 79.210 35.170 102.00
Diff. (%) 4.62 3.97 3.52 3.03 3.18 2.56 2.86 2.06 0.82 0.14

ASM 10.148 12.058 15.597 29.132 22.173 53.472 28.566 77.793 34.909 102.10
ANSYS 10.650 12.520 16.140 30.100 22.910 54.820 29.300 79.220 35.080 101.90
Diff. (%) 4.95 3.83 3.48 3.32 3.32 2.52 2.57 1.83 0.49 -0.20

ASM 10.156 12.070 15.604 29.163 22.182 53.532 28.578 77.884 34.923 102.23
ANSYS 10.680 12.530 16.150 30.140 22.930 54.870 29.260 79.190 35.030 101.80
Diff. (%) 5.16 3.81 3.50 3.35 3.37 2.50 2.39 1.68 0.31 -0.42

ASM 10.168 12.089 15.616 29.210 22.196 53.622 28.594 78.019 34.943 102.41
ANSYS 10.710 12.540 16.160 30.180 22.940 54.760 29.170 79.050 34.910 101.60
Diff. (%) 5.33 3.73 3.48 3.32 3.35 2.12 2.01 1.32 -0.09 -0.79

E1/E2

3 10 20 30 40

40

80

Table 6.3. Effects of in-plane orthotropicity ratio (E 1 /E 2 ), beam rigidity (K1 ) and number of 
layers (n ) on the dimensionless uniaxial buckling load (         ) of a square angle-ply laminated 
plate (45º/-45º/45º/-45º..., b/h  = 1000, G 12  = G 13  = 0.6E 2 ,  G23 = 0.5E2,  ν 12  = 0.25)

5

10

20

30

K1 Method

1

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)
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ASM2 ANSYS3 Diff.(%)4 ASM ANSYS Diff.(%)
0 16.881 18.040 6.87 16.881 18.060 6.99
5 16.629 17.660 6.20 16.933 17.980 6.19
10 16.037 16.980 5.88 17.097 18.010 5.34
15 15.390 16.290 5.85 17.378 18.380 5.77
20 14.853 15.590 4.96 17.769 18.570 4.51
25 14.460 15.130 4.63 18.268 19.060 4.34
30 14.189 14.790 4.24 18.871 19.660 4.18
35 14.008 14.490 3.44 19.578 20.190 3.12
40 13.891 14.340 3.23 20.376 21.010 3.11
45 13.821 14.170 2.52 21.235 21.760 2.47
50 13.793 14.040 1.79 22.099 22.400 1.36
55 13.807 14.050 1.76 22.887 23.150 1.15
60 13.883 14.030 1.06 23.498 23.710 0.90
65 14.096 13.950 -1.04 23.828 24.010 0.76
70 14.634 14.280 -2.42 23.804 23.990 0.78
75 15.782 15.310 -2.99 23.428 23.430 0.01
80 17.834 17.270 -3.16 22.835 22.730 -0.46
85 20.571 19.870 -3.41 22.299 22.150 -0.67
90 22.090 21.830 -1.18 22.090 21.940 -0.68

1

2 ASM - Analytical Strip Methed (present method)
3 ANSYS - Finite Element Analysis program (ANSYS Inc., 2007)

4 Diff. (%) = 

Angle 
(θ )

2 Layers 10 Layers

Tab 6.4. Effects of ply angle (θ ) and number of layers (n ) on the
dimensionless uniaxial buckling load ( ) of a rectangular angle-ply
laminated plate (a/b = 2, b/h = 1000, E 1 /E 2 =20, G 12 = G 13 = 0.6E 2

G 23 = 0.5E 2 , ν 12 = 0.25) with beams at x = 0, x = a /2 and x = a
respectively, K1  = 1 for all 3 beams

1
yN
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2

2

hE
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N y
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Table 6.5.  Effect of boundary condition and positions of two inside beams on 
maximized dimensionless uniaxial buckling load for a rectangular cross-ply 
laminated plate (0º/90º/0º/90º/..., b/h = 1000, E1/E2=20, G12 = G13 = 0.6E2,  
G23 = 0.5E2,  ν12 = 0.25) 

2 Layers 10 Layers 
Boundary Condition 2

max,yN  xb/b 
max,yN  xb/b 

 

7.270 0.58 13.848 0.56 

  

13.949 0.86 20.439 0.88 
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Table 6.6.  Effect of ply angle and positions of two inside beams on maximized 
dimensionless uniaxial buckling load, yN  for a rectangular angle-ply laminated plate  
(θ/-θ/θ/-θ/..., b/h = 1000, E1/E2=20, G12 = G13 = 0.6E2, G23 = 0.5E2,  ν12 = 0.25) with 
two boundary beams at x = 0 and x = a 

2 Layers 10 Layers Angle 
(θ) 2

max,yN  xb/b max,yN  xb/b 
0 13.483 0.90 13.483 0.90 
5 13.405 0.90 13.522 0.90 
10 13.227 0.89 13.643 0.90 
15 13.041 0.89 13.855 0.90 
20 12.909 0.88 14.169 0.90 
25 12.845 0.88 14.605 0.90 
30 12.848 0.88 15.185 0.90 
35 12.915 0.87 15.927 0.90 
40 13.043 0.87 16.841 0.90 
45 13.219 0.88 17.913 0.90 
50 13.464 0.87 19.104 0.89 
55 13.766 0.87 20.347 0.89 
60 14.150 0.87 21.542 0.89 
65 14.663 0.87 22.580 0.88 
70 15.441 0.87 23.344 0.87 
75 16.760 0.87 23.757 0.86 
80 18.967 0.87 23.834 0.85 
85 21.958 0.85 23.745 0.85 
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Figure 6.2.  Maximizing dimensionless uniaxial buckling load ( yN ) by varying inside 
beam position for a square cross-ply laminated plate (0°/90°/0°/90°/..., b/h = 1000) 
with two boundary beams at x = 0 and x = a 
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CHAPTER 7 

CONCLUSIONS AND FURTHER RESEARCH NEEDS 
 
7.1 General Summary 

 An Analytical Strip Method (ASM) has been presented for the bending, free 

vibration and buckling of antisymmetric cross-ply and angle-ply laminated plates.  

Whenever possible, the results from the present study were compared with published 

ones, or compared with results by ANSYS.  Most of the results among them are very 

well matched. 

With the Analytical Strip Method, the analyst has the ability to analyze 

bending-extension coupling for antisymmetric cross-ply and angle-ply laminated plates, 

with various boundary and/or internal support and loading conditions.  A system of three 

well-known equations of equilibrium is suitably combined into a single eighth-order 

partial differential equation, in terms of a displacement function.  The series form 

solutions to the deflection, buckling, and natural frequency problems for antisymmetric 

cross-ply and angle-ply plates are also found.   

 

7.2 Bending of Laminated Plate 

The Analytical Strip Method (ASM) is applied to the bending-extension coupling 

of antisymmetric laminated composite plates and stiffened continuous antisymmetric 

laminated composite plates.  Graphical and tabular results are presented for the 

deflections and stresses.  A convergence study indicates that both deflection and stress 

results obtained by using ASM for antisymmetric laminated plates converge rapidly with 

deflections converging earlier compared to the stresses.  This implies that the developed 

ASM can attain the desired accuracy, with reasonably fewer number of series.  The 

results obtained using ASM are validated by comparing them with existing results, 

obtained using CLPT or ANSYS.  All the results of deflections and stresses, listed for 

laminated plate obtained from ASM, CLPT, and ANSYS, are well matched.  The 

proposed methodology enables researchers to analyze composite laminated plates and 

stiffened continuous antisymmetric composite laminated plates, with beam or point 

supports, subjected to any combination of patch, uniform, line, and concentrated loads 
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without resorting to approximating methods. 

 

7.3 Free Vibration and Buckling of Laminated Plate   

Based on ASM, the same method of hit and trial that involves a bisection search 

strategy is used to solve free vibration and buckling problems of antisymmetric laminated 

plate.  The results obtained using ASM are compared with ones obtained by ANSYS.  

For free vibration, tables in Chapter 5 list the effects of in-plane orthotropicity ratio of 

individual layers, ply-orientation angle (for angle-ply plate), number of layers, and aspect 

ratio on ω  of cross-ply and angle-ply plates.  The agreement between results obtained 

by ASM and by ANSYS is excellent.     

For buckling analysis, tables in Chapter 6 list effects of in-plane orthotropicity 

ratio of individual layers, ply-orientation angle (for angle-ply plate), number of layers, 

and aspect ratio on yN  of cross-ply and angle-ply plates.  The agreement between 

buckling load results, obtained by ASM and by ANSYS, is not as good as one for free 

vibration.  The maximum difference between buckling loads, obtained from ASM and 

ANSYS, reaches 6.97%, when ply orientation angle, θ = 0° and plate layers n = 10. 

ASM can be easily used to maximize fundamental frequency or buckling load 

capacity for antisymmetric angle-ply and cross-ply laminated plate.  The maximized 

values can be reached by varying beam position and ply-orientation angle (for angle-ply 

plate).   

 

7.4 Recommendation for Future Research  

 An Analytical Strip Method (ASM) has been developed for the bending, free 

vibration and buckling of antisymmetric cross-ply and angle-ply laminated plates, by 

solving a single eighth order partial differential equation, in terms of a displacement 

function.  Based on the current work, recommendations for future research include:  

• Plates with varied thicknesses and varied properties: All laminated plates 

considered in this study have been uniform thickness or equal property for the 

whole target plate.  ASM can be extended to laminated plates with varied 

thicknesses and varied properties.  Laminated plated can be divided to strips, 
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based on discontinuous lines at which thickness or property changes.  More 

complicated mathematic derivation and matrix solving procedure should be used 

to pursue these solutions. 

• Fundamental frequency under in-plane loads: In general engineering practice, it is 

normal to find fundamental frequency for laminated plates with in-plane loading.  

It is interesting and convenient to study fundamental frequency for laminated 

plate with in-plane loading, using ASM. 

• The presented work could be a starting point for optimization of the 

antisymmetric cross-ply and angle-ply laminated plates.  Obtaining an efficient 

antisymmetric structural design, which meets all requirements of a specific 

application, can be achieved by sizing cross-sectional areas and by tailoring 

material properties through selective choice of ply orientation, number of 

stiffeners, position of stiffeners and stacking sequence of laminae. 

• The proposed methodology can be possibly extended to antisymmetric cross-ply 

and angle-ply laminated sector plates. 
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Appendix A 

HOMOGENOUS SOLUTIONS, ),,( yxHΦ OF GDE FOR 

ANTISYMMETRIC LAMINATED PLATES 

 

For an antisymmetric laminated plate, subjected to a transverse load q(x, y), the 

governing differential equation is shown in Equation 2.13: 
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For a rectangular plate, simply supported along two edges parallel to the x-axis, 

the solution to Equation 2.13 can be presented in a single series form: 
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∞
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nn yxyx βφ          (3.1) 

in which,  

βn = 
b

nπ            (3.2) 

and b is the length of the plate along the y-axis. 

With solution in Equation 3.1, Equation 2.13 can be reduced to: 
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This is an infinite set of ordinary differential equations for )(xmφ  (m = 1, 2, 3…, 

∞).  It is a unidirectional and linear 8th order differential equation, which can be solved 

by the superposition of the homogeneous part, ),(Φ yxH , and the particular part of the 

equation, ).,(Φ yxP  

),(Φ),(Φ),(Φ yxyxyx PH +=          (3.6a) 

or 
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The characteristic equation of the homogeneous part of Equation 3.5 for mode m 
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is: 
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1 =+−+− mmmmmmmmm AAAAA ββγβγβγβγ        (3.8) 

in which, mmβγ  are the characteristic roots for function )(xHmφ .  Since ,0≠mβ  

Equation 3.8 can be simplified as: 
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 There are 9 possible root combinations for solutions of Equation 3.9.  

Corresponding to each characteristic root combination, there are 9 homogenous solutions, 

),( yxHΦ  as follows: 
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Case 2:  

 For roots, ,21 mm iγγ ±±  m3γ±  and ,4miγ± the homogeneous solution, 

),( yxHΦ : 

[ ]

[ ]
)sin(

)sin()cos(

)sinh()cosh(

)sin()sinh()cosh(

)cos()sinh()cosh(

),(Φ

4847

3635

21413

21211

y

xCxC

xCxC

xxCxC

xxCxC

yx m
m

mmmmmm

mmmmmm

mmmmmmmm

mmmmmmmm

H β

βγβγ

βγβγ

βγβγβγ

βγβγβγ

∑
∞

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

++

++

++

+

=  (A.1) 

 



www.manaraa.com

 
 

 106 

Case 3:  

 For roots, ,1miγ±  mi 2γ±  and ,43 mm iγγ ±± the homogeneous solution, 
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Case 4:  

 For roots, ,1miγ±  ,2miγ± mi 3γ±  and ,4miγ± the homogeneous solution, 
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Case 5:  

 For roots, ,1miγ±  ,2miγ± m3γ±  and ,4miγ± the homogeneous solution, 
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Case 6:  

 For roots, ,1miγ±  ,2miγ± m3γ±  and ,4mγ± the homogeneous solution, 
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Case 7:  

 For roots, ,1mγ± m2γ±  and ,43 mm iγγ ±± the homogeneous solution, ),( yxHΦ : 

[ ]

[ ]

)sin(

)sin()sinh()cosh(

)cos()sinh()cosh(

)sinh()cosh(

)sinh()cosh(

),(Φ

43837

43635

2221

1211

y

xxCxC

xxCxC

xCxC

xCxC

yx m
m

mmmmmmmm

mmmmmmmm

mmmmmm

mmmmmm

H β

βγβγβγ

βγβγβγ

βγβγ

βγβγ

∑
∞

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

++

++

++

+

=  (A.6) 

 

Case 8:  

 For roots, ,1mγ±  ,2mγ± m3γ±  and ,4miγ± the homogeneous solution, 
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Case 9:  

 For roots, ,1mγ±  ,2mγ± m3γ±  and ,4mγ± the homogeneous solution, 
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